47 research outputs found

    Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

    Get PDF
    BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota

    Cyclooxygenases and the cardiovascular system.

    Get PDF
    Cyclooxygenase (COX)-1 and COX-2 are centrally important enzymes within the cardiovascular system with a range of diverse, sometimes opposing, functions. Through the production of thromboxane, COX in platelets is a pro-thrombotic enzyme. By contrast, through the production of prostacyclin, COX in endothelial cells is antithrombotic and in the kidney regulates renal function and blood pressure. Drug inhibition of COX within the cardiovascular system is important for both therapeutic intervention with low dose aspirin and for the manifestation of side effects caused by nonsteroidal anti-inflammatory drugs. This review focuses on the role that COX enzymes and drugs that act on COX pathways have within the cardiovascular system and provides an in-depth resource covering COX biology and pharmacology. The review goes on to consider the role of COX in both discrete cardiovascular locations and in associated organs that contribute to cardiovascular health. We discuss the importance of, and strategies to manipulate the thromboxane: prostacyclin balance. Finally within this review the authors discuss testable COX-2-hypotheses intended to stimulate debate and facilitate future research and therapeutic opportunities within the field

    Selective inhibition of COX-2 in humans is associated with less gastrointestinal injury: a comparison of nimesulide and naproxen

    No full text
    BACKGROUND—Selective inhibitors of cyclooxygenase (COX)-2 may provoke less gastric damage and platelet inhibition than conventional non-steroidal anti-inflammatory drugs.
AIMS—We compared the biochemical and gastrointestinal effects of nimesulide, a potent and selective COX-2 inhibitor, with naproxen which exhibits no selectivity.
SUBJECTS—Thirty six healthy volunteers were randomised to nimesulide 100 mg or naproxen 500 mg twice daily for two weeks in a double blind, crossover study with a washout between treatments.
METHODS—Gastrointestinal side effects were assessed by endoscopy, and by estimation of small intestinal absorption-permeability and inflammation. Comparisons were made between variables at the end of each treatment phase.
RESULTS—Nimesulide caused significantly less gastric injury using the modified Lanza score (p<0.001) as well as reduced duodenum injury (p=0.039). Nimesulide had lower visual analogue scores (VAS) for haemorrhage and erosive lesions in the stomach (p<0.001) and for mucosal injection in the duodenum (p=0.039). Naproxen increased excretion of calprotectin, a marker of intestinal inflammation (5.5 (1.2) to 12.1 (2.1) mg/l) while nimesulide had no effect (treatment difference p=0.03). Naproxen abolished platelet aggregation to arachidonic acid and suppressed serum thromboxane B(2) (TXB(2)) by 98%, indices of COX-1 activity. In contrast, nimesulide had no significant effect on platelet aggregation, although it reduced serum TXB(2) by 29%. Production of prostaglandin E(2) and prostacyclin by gastric biopsies, also COX-1 dependent, was inhibited by naproxen, but not by nimesulide. COX-2 activity, determined as endotoxin induced prostaglandin E(2) formation in plasma, was markedly suppressed by both treatments.
INTERPRETATION—Nimesulide has preferential selectivity for COX-2 over COX-1 in vivo at full therapeutic doses and induces less gastrointestinal damage than that seen with naproxen in the short term.


Keywords: cyclooxygenase; prostaglandins; platelet aggregation; non-steroidal anti-inflammatory drug enteropath
    corecore