16 research outputs found

    Quantifying system disturbance and recovery from historical mining-derived metal contamination at Brotherswater, northwest England

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10933-016-9907-1Metal ore extraction in historical times has left a legacy of severe contamination in aquatic ecosystems around the world. In the UK, there are ongoing nationwide surveys of present-day pollution discharged from abandoned mines but few assessments of the magnitude of contamination and impacts that arose during historical metal mining have been made. We report one of the first multi-centennial records of lead (Pb), zinc (Zn) and copper (Cu) fluxes into a lake (Brotherswater, northwest England) from point-sources in its catchment (Hartsop Hall Mine and Hogget Gill processing plant) and calculate basin-scale inventories of those metals. The pre-mining baseline for metal contamination has been established using sediment cores spanning the past 1,500 years and contemporary material obtained through sediment trapping. These data enabled the impact of 250 years of local, small-scale mining (1696 – 1942) to be quantified and an assessment of the trajectory towards system recovery to be made. The geochemical stratigraphy displayed in twelve sediment cores show strong correspondence to the documented history of metal mining and processing in the catchment. The initial onset in 1696 was detected, peak Pb concentrations (>10,000 µg g-1) and flux (39.4 g m-2 y-1) corresponded to the most intensive mining episode (1863-1871) and 20th century technological enhancements were reflected as a more muted sedimentary imprint. After careful evaluation, we used these markers to augment a Bayesian age-depth model of the independent geochronology obtained using radioisotope dating (14C, 210Pb, 137Cs and 241Am). Total inventories of Pb, Zn and Cu for the lake basin during the period of active mining were 15,415 kg, 5,897 kg and 363 kg, respectively. The post-mining trajectories for Pb and Zn project a return to pre-mining levels within 54-128 years for Pb and 75-187 years for Zn, although future remobilisation of metal-enriched catchment soils and floodplain sediments could perturb this recovery. We present a transferable paleolimnological approach that highlights flux-based assessments are vital to accurately establish the baseline, impact and trajectory of mining-derived contamination for a lake catchment

    Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes

    Get PDF
    Abstract: Purpose: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods: Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach
    corecore