571 research outputs found
On Invariant Notions of Segre Varieties in Binary Projective Spaces
Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1,
2) that are direct products of copies of PG(1, 2), being any positive
integer, are established and studied. We first demonstrate that there exists a
hyperbolic quadric that contains \Segrem(2) and is invariant under its
projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into
\PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant
under \Stab{m}{2} as well. Such a basis can be split into two subsets whose
spans are either real or complex-conjugate subspaces according as is even
or odd. In the latter case, these spans can, in addition, be viewed as
indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m
- 1, 2). This spread is also related with a \Stab{m}{2}-invariant
non-singular Hermitian variety. The case is examined in detail to
illustrate the theory. Here, the lines of the invariant spread are found to
fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7,
2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and
Cryptograph
Time-dependent spectral-feature variations of stars displaying the B[e] phenomenon; I. V2028 Cyg
We present results of nearly six years of spectroscopic observations of the
B[e] star V2028 Cyg. The presence of the cold-type absorption lines combined
with a hot-type spectrum indicate the binarity of this object. Since B[e] stars
are embedded in an extended envelope, the usage of common stellar atmosphere
models for the analysis is quite inappropriate. Therefore, we focus on the
analysis of the long-term spectral line variations in order to determine the
nature of this object. We present the time dependences of the equivalent width
and radial velocities of the H alpha line, [O I] 6300 A, Fe II 6427, 6433, and
6456 A lines. The bisector variations and line intensities are shown for the H
alpha line. The radial velocities are also measured for the absorption lines of
the K component. No periodic variation is found. The observed data show
correlations between the measured quantities, which can be used in future
modelling
Constraining Antimatter Domains in the Early Universe with Big Bang Nucleosynthesis
We consider the effect of a small-scale matter-antimatter domain structure on
big bang nucleosynthesis and place upper limits on the amount of antimatter in
the early universe. For small domains, which annihilate before nucleosynthesis,
this limit comes from underproduction of He-4. For larger domains, the limit
comes from He-3 overproduction. Most of the He-3 from antiproton-helium
annihilation is annihilated also. The main source of He-3 is
photodisintegration of He-4 by the electromagnetic cascades initiated by the
annihilation.Comment: 4 pages, 2 figures, revtex, (slightly shortened
Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration
Soil and water bioengineering is a technology that encourages scientists and practitioners to combine their knowledge and skills in the management of ecosystems with a common goal to maximize benefits to both man and the natural environment. It involves techniques that use plants as living building materials, for: (i) natural hazard control (e.g., soil erosion, torrential floods and landslides) and (ii) ecological restoration or nature-based re-introduction of species on degraded lands, river embankments, and disturbed environments. For a bioengineering project to be successful, engineers are required to highlight all the potential benefits and ecosystem services by documenting the technical, ecological, economic and social values. The novel approaches used by bioengineers raise questions for researchers and necessitate innovation from practitioners to design bioengineering concepts and techniques. Our objective in this paper, therefore, is to highlight the practice and research needs in soil and water bioengineering for reconciling natural hazard control and ecological restoration. Firstly, we review the definition and development of bioengineering technology, while stressing issues concerning the design, implementation, and monitoring of bioengineering actions. Secondly, we highlight the need to reconcile natural hazard control and ecological restoration by posing novel practice and research questions
Isospin Physics in Heavy-Ion Collisions at Intermediate Energies
In nuclear collisions induced by stable or radioactive neutron-rich nuclei a
transient state of nuclear matter with an appreciable isospin asymmetry as well
as thermal and compressional excitation can be created. This offers the
possibility to study the properties of nuclear matter in the region between
symmetric nuclear matter and pure neutron matter. In this review, we discuss
recent theoretical studies of the equation of state of isospin-asymmetric
nuclear matter and its relations to the properties of neutron stars and
radioactive nuclei. Chemical and mechanical instabilities as well as the
liquid-gas phase transition in asymmetric nuclear matter are investigated. The
in-medium nucleon-nucleon cross sections at different isospin states are
reviewed as they affect significantly the dynamics of heavy ion collisions
induced by radioactive beams. We then discuss an isospin-dependent transport
model, which includes different mean-field potentials and cross sections for
the proton and neutron, and its application to these reactions. Furthermore, we
review the comparisons between theoretical predictions and available
experimental data. In particular, we discuss the study of nuclear stopping in
terms of isospin equilibration, the dependence of nuclear collective flow and
balance energy on the isospin-dependent nuclear equation of state and cross
sections, the isospin dependence of total nuclear reaction cross sections, and
the role of isospin in preequilibrium nucleon emissions and subthreshold pion
production.Comment: 101 pages with embedded epsf figures, review article for
"International Journal of Modern Physics E: Nuclear Physics". Send request
for a hard copy to 1/author
Heating of nuclei with energetic anti-protons
International audienceHigh-energy γ rays associated with the decay of the giant dipole resonance have been measured for two fusion reactions leading to the 140Sm compound nucleus at an excitation energy of 71 MeV. The observed yield increases with the asymmetry in the ratios of the number of neutrons to protons in the entrance channel. This is interpreted as resulting from giant dipole phonons excited at the moment of collision in an N/Z asymmetric reaction
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field
- …
