1,075 research outputs found
Higher Order and boundary Scaling Fields in the Abelian Sandpile Model
The Abelian Sandpile Model (ASM) is a paradigm of self-organized criticality
(SOC) which is related to conformal field theory. The conformal fields
corresponding to some height clusters have been suggested before. Here we
derive the first corrections to such fields, in a field theoretical approach,
when the lattice parameter is non-vanishing and consider them in the presence
of a boundary.Comment: 7 pages, no figure
Chaos in Sandpile Models
We have investigated the "weak chaos" exponent to see if it can be considered
as a classification parameter of different sandpile models. Simulation results
show that "weak chaos" exponent may be one of the characteristic exponents of
the attractor of \textit{deterministic} models. We have shown that the
(abelian) BTW sandpile model and the (non abelian) Zhang model posses different
"weak chaos" exponents, so they may belong to different universality classes.
We have also shown that \textit{stochasticity} destroys "weak chaos" exponents'
effectiveness so it slows down the divergence of nearby configurations. Finally
we show that getting off the critical point destroys this behavior of
deterministic models.Comment: 5 pages, 6 figure
Abelian Sandpile Model on the Honeycomb Lattice
We check the universality properties of the two-dimensional Abelian sandpile
model by computing some of its properties on the honeycomb lattice. Exact
expressions for unit height correlation functions in presence of boundaries and
for different boundary conditions are derived. Also, we study the statistics of
the boundaries of avalanche waves by using the theory of SLE and suggest that
these curves are conformally invariant and described by SLE2.Comment: 24 pages, 5 figure
AdS_3/LCFT_2 - Correlators in Cosmological Topologically Massive Gravity
For cosmological topologically massive gravity at the chiral point we
calculate momentum space 2- and 3-point correlators of operators in the
postulated dual CFT on the cylinder. These operators are sourced by the bulk
and boundary gravitons. Our correlators are fully consistent with the proposal
that cosmological topologically massive gravity at the chiral point is dual to
a logarithmic CFT. In the process we give a complete classification of
normalizable and non-normalizeable left, right and logarithmic solutions to the
linearized equations of motion in global AdS_3.Comment: 39 pages + appendices, 1 eps figure, v2: minor changes in text in
4.1.2, corrected typo in (2.31
Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents
Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging
Atomic Force Microscopy Images Label-Free, Drug Encapsulated Nanoparticles In Vivo and Detects Difference in Tissue Mechanical Properties of Treated and Untreated: A Tip for Nanotoxicology
Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM) for visualising label-free, drug encapsulated polyester particles of ~280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM) and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics
Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: targetable nanocomplexes for in vivo nucleic acid delivery
One of the greatest challenges for the development of genetic therapies is the efficient targeted delivery of therapeutic nucleic acids. Towards this goal, we have introduced a new engineering initiative in self-assembly of biologically safe and stable nanovesicle complexes (∼90-140 nm) derived from giant unilamellar vesicle (GUV) precursors and comprising plasmid DNA or siRNA and targeting peptide ligands. The biological performance of the engineered nanovesicle complexes were studied both in vitro and in vivo and compared with cationic liposome-based lipopolyplexes. Compared with cationic lipopolyplexes, nanovesicle complexes did not show advantages in transfection and cell uptake. However, nanovesicle complexes neither displayed significant cytotoxicity nor activated the complement system, which are advantageous for intravenous injection and tumour therapy. On intravenous administration into a neuroblastoma xenograft mouse model, nanovesicle complexes were found to distribute throughout the tumour interstitium, thus providing an alternative safer approach for future development of tumour-specific therapeutic nucleic acid interventions. On oropharyngeal instillation, nanovesicle complexes displayed better transfection efficiency than cationic lipopolyplexes. The technological advantages of nanovesicle complexes, originating from GUVs, over traditional cationic liposome-based lipopolyplexes are discussed. STATEMENT OF SIGNIFICANCE: The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders
Development Of An Underground Stratified Thermal Energy Storage (TES) Tank ModelDevelopment of an underground stratified thermal energy storage tank model and performance comparisons with an above-ground tank
The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: A double blind placebo controlled clinical trial
Varicocele is one of the most common causes of male infertility and spontaneous pregnancy rate after varicocelectomy is only about 30. The most important seminal antioxidant is vitamin C but recent studies about the effects of vitamin C on spermatogenesis are controversial; therefore, we decided to evaluate its role after varicocelectomy. In a double blind randomized controlled clinical trial, 115 men with infertility and clinical varicocele with abnormal semen analyses were recruited. After surgery, the intervention group received vitamin C (250 mg bid) and the control group received placebo for three months. Mean sperm count, motility, and morphology index of two semen analyses (before and after surgery) were compared between the two groups. Univariate general linear model and stepwise linear regression were used in analysis. The mean age (±SD) of participants was 27.6±5.3 years. Vitamin C group had statistically significant better normal motility (20.8 vs. 12.6, P=0.041) and morphology (23.2 vs. 10.5, P<0.001) than placebo group. Considering the values prior to surgery as covariate, vitamin C was not effective on sperm count (P=0.091); but it improved sperm motility (P=0.016) and morphology (P<0.001) even after excluding the confounding effect of age (P=0.044 and P=0.001, respectively). Vitamin C was also an independent factor in predicting motility and normal morphology after surgery. Ascorbic acid can play a role as adjuvant treatment after varicocelectomy in infertile men
Degradation versus self-assembly of block copolymer micelles
The stability of micelles self-assembled from block copolymers can be altered
by the degradation of the blocks. Slow degradation shifts the equilibrium size
distribution of block copolymer micelles and change their properties.
Quasi-equilibrium scaling theory shows that the degradation of hydrophobic
blocks in the core of micelles destabilize the micelles reducing their size,
while the degradation of hydrophilic blocks forming coronas of micelles favors
larger micelles and may, at certain conditions, induce the formation of
micelles from individual chains.Comment: Published in Langmuir http://pubs.acs.org/doi/pdf/10.1021/la204625
- …
