663 research outputs found

    Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit

    Get PDF
    The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding the computations it performs, hampered by the non-laminar structure that prevents identification of a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined computational elements within the striatum. We construct a new three-dimensional model of the striatal microcircuit's connectivity, and instantiate this with our dopamine-modulated neuron models of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to experimental data. We introduce a novel multiple spike-train analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear, consistent with experimental observations, and that the number of assemblies and the time-scale of synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs. Such small cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control problems seen in humans and animals following a loss of dopamine cells. (C) 2009 Elsevier Ltd. All rights reserved

    How is alpha‐synuclein cleared from the cell?

    Get PDF
    The levels and conformers of alpha‐synuclein are critical in the pathogenesis of Parkinson's Disease and related synucleinopathies. Homeostatic mechanisms in protein degradation and secretion have been identified as regulators of alpha‐synuclein at different stages of its intracellular trafficking and transcellular propagation. Here we review pathways involved in the removal of various forms of alpha‐synuclein from both the intracellular and extracellular environment. Proteasomes and lysosomes are likely to play complementary roles in the removal of intracellular alpha‐synuclein species, in a manner that depends on alpha‐synuclein post‐translational modifications. Extracellular alpha‐synuclein is cleared by extracellular proteolytic enzymes, or taken up by neighboring cells, especially microglia and astrocytes, and degraded within lysosomes. Exosomes, on the other hand, represent a vehicle for egress of excess burden of the intracellular protein, potentially contributing to the transfer of alpha‐synuclein between cells. Dysfunction in any one of these clearance mechanisms, or a combination thereof, may be involved in the initiation or progression of Parkinson's disease, whereas targeting these pathways may offer an opportunity for therapeutic intervention

    Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF’s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF’s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD

    Stability of sulphide-fucntionalized SBA-15 in aqueous medium

    Get PDF

    Two C-terminal Sequence Variations Determine Differential Neurotoxicity Between Human and Mouse α-synuclein

    Get PDF
    BACKGROUND: α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson\u27s disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS: Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey\u27s multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn\u27s multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS: Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS: Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders

    State-of-the-art in sub-phenotyping midbrain dopamine neurons

    Get PDF
    Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions

    The Product Produced by Interaction of the Cis-diammin(cyclobutane 1,1 dicarboxylato) Platinum(II) with Arabinogalactan

    Get PDF
    Получен продукт взаимодействия комплекса цис-диамин(циклобутан-1,1-дикарбоксилат- О,О`) платина(II) с арабиногалактаном, который охарактеризован методами РФА, рентгенофлуоресцентным, ИК-спектроскопии, термогравиметрии и УФ-спектрофотоментии, установлен его состав. Показано, что цис-диамин(циклобутан-1,1-дикарбоксилат-О,О`) платина(II) предположительно связан с арабиногалактаном водородными связями, образованными группами -С-О-С- и NH3-группами исходного комплексаThe obtained new product of reaction of the complex cis-diammin (cyclobutane 1,1 dicarboxylato) platinum(II) with arabinogalactan was characterized by XRD, IR-spectroscopy, UF-spectrophotometry and thermogravimetry. The composition and structure of this product was studied. It has been shown that cis-diammin(cyclobutane 1,1 dicarboxylato) platinum(II) associated with arabinogalactan through communications -C-О-C- groups by hydrogen of the original comple
    corecore