374 research outputs found
Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]
An error was detected in the code used for the analysis of the HD209458b
sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P
profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C
New observations of the extended hydrogen exosphere of the extrasolar planet HD209458b
Atomic hydrogen escaping from the planet HD209458b provides the largest
observational signature ever detected for an extrasolar planet atmosphere.
However, the Space Telescope Imaging Spectrograph (STIS) used in previous
observational studies is no longer available, whereas additional observations
are still needed to better constrain the mechanisms subtending the evaporation
process, and determine the evaporation state of other `hot Jupiters'. Here, we
aim to detect the extended hydrogen exosphere of HD209458b with the Advanced
Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and to find
evidence for a hydrogen comet-like tail trailing the planet, which size would
depend on the escape rate and the amount of ionizing radiation emitted by the
star. These observations also provide a benchmark for other transiting planets,
in the frame of a comparative study of the evaporation state of close-in giant
planets. Eight HST orbits are used to observe two transits of HD209458b.
Transit light curves are obtained by performing photometry of the unresolved
stellar Lyman-alpha emission line during both transits. Absorption signatures
of exospheric hydrogen during the transit are compared to light curve models
predicting a hydrogen tail. Transit depths of (9.6 +/- 7.0)% and (5.3 +/-
10.0)% are measured on the whole Lyman-alpha line in visits 1 and 2,
respectively. Averaging data from both visits, we find an absorption depth of
(8.0 +/- 5.7)%, in good agreement with previous studies. The extended size of
the exosphere confirms that the planet is likely loosing hydrogen to space.
Yet, the photometric precision achieved does not allow us to better constrain
the hydrogen mass loss rate.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 3
figure
A scenario of planet erosion by coronal radiation
Context: According to theory, high-energy emission from the coronae of cool
stars can severely erode the atmospheres of orbiting planets. No observational
tests of the long term effects of erosion have yet been made. Aims: To analyze
the current distribution of planetary mass with X-ray irradiation of the
atmospheres in order to make an observational assessment of the effects of
erosion by coronal radiation. Methods: We study a large sample of
planet-hosting stars with XMM-Newton, Chandra and ROSAT; make a careful
identification of X-ray counterparts; and fit their spectra to make accurately
measurements of the stellar X-ray flux. Results: The distribution of the
planetary masses with X-ray flux suggests that erosion has taken place: most
surviving massive planets, (M_p sin i >1.5 M_J), have been exposed to lower
accumulated irradiation. Heavy erosion during the initial stages of stellar
evolution is followed by a phase of much weaker erosion. A line dividing these
two phases could be present, showing a strong dependence on planet mass.
Although a larger sample will be required to establish a well-defined erosion
line, the distribution found is very suggestive. Conclusions: The distribution
of planetary mass with X-ray flux is consistent with a scenario in which planet
atmospheres have suffered the effects of erosion by coronal X-ray and EUV
emission. The erosion line is an observational constraint to models of
atmospheric erosion.Comment: A&A 511, L8 (2010). 4 pages, 3 figures, 1 online table (included).
Language edited; corrected a wrong unit conversion (g/s -> M_J/Gyr);
corrected values in column 12 of Table 1 (slightly underestimated in first
version), and Figure 2 updated accordingl
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
Ion Neutral Mass Spectrometer Measurements from Titan
Introduction: The Ion Neutral Mass Spectrometer (INMS) aboard the Cassini orbiter has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, argon, and a host of stable carbon-nitrile compounds in its first flyby of Titan. The bulk composition and thermal structure of the moon s upper atmosphere do not appear to be changed since the Voyager flyby in 1979. However, the more sensitive techniques provided by modern in-situ mass spectrometry also give evidence for large-spatial-scale large-amplitude atmospheric waves in the upper atmosphere and for a plethora of stable carbon-nitrile compounds above 1174 km. Furthermore, they allow the first direct measurements of isotopes of nitrogen, carbon, and argon, which provide interesting clues about the evolution of the atmosphere. The atmosphere was first accreted as ammonia and ammonia ices from the Saturn sub-nebula. Subsequent photochemistry likely converted the atmosphere into molecular nitrogen. The early atmosphere was 1.5 to 5 times more substantial and was lost via escape over the intervening 4.5 billion years due to the reduced gravity associated with the relatively small mass of Titan. Carbon in the form of methane has continued to outgas over time from the interior with much of it being deposited in the form of complex hydrocarbons on the surface and some of it also being lost to space
Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b
Atmospheric escape has been detected from the exoplanet HD 209458b through
transit observations of the hydrogen Lyman-alpha line. Here we present
spectrally resolved Lyman-alpha transit observations of the exoplanet HD
189733b at two different epochs. These HST/STIS observations show for the first
time, that there are significant temporal variations in the physical conditions
of an evaporating planetary atmosphere. While atmospheric hydrogen is not
detected in the first epoch observations, it is observed at the second epoch,
producing a transit absorption depth of 14.4+/-3.6% between velocities of -230
to -140 km/s. Contrary to HD 209458b, these high velocities cannot arise from
radiation pressure alone and require an additional acceleration mechanism, such
as interactions with stellar wind protons. The observed absorption can be
explained by an atmospheric escape rate of neutral hydrogen atoms of about 10^9
g/s, a stellar wind with a velocity of 190 km/s and a temperature of ~10^5K.
An X-ray flare from the active star seen with Swift/XRT 8 hours before the
second-epoch observation supports the idea that the observed changes within the
upper atmosphere of the planet can be caused by variations in the stellar wind
properties, or by variations in the stellar energy input to the planetary
escaping gas (or a mix of the two effects). These observations provide the
first indication of interaction between the exoplanet's atmosphere and stellar
variations.Comment: To be published in A&A Letters, June 28, 201
Recommended from our members
The Morphology of the Topside Martian Ionosphere: Implications on Bulk Ion Flow
Prior to the Mars Atmosphere and Volatile Evolution mission, the only information on the composition of the Martian ionosphere came from the Viking Retarding Potential Analyzer data, revealing the presence of substantial ion outflow on the dayside of Mars. Extensive measurements made by the Mars Atmosphere and Volatile Evolution Neutral Gas and Ion Mass Spectrometer allow us to examine the morphology of the Martian ionosphere not only in unprecedented detail but also on both the dayside and the nightside of the planet. Above 300km, various ionospheric species present a roughly constant density scale height around 100km on the dayside and 180km on the nightside. An evaluation of the ion force balance, appropriate for regions with near-horizontal magnetic field lines, suggests the presence of supersonic ion outflow predominantly driven by the ambient magnetic pressure, with characteristic dayside and nightside flow velocities of 4 and 20km/s, respectively, both referred to an altitude of 500km. The corresponding total ion outflow rates are estimated to be 5x10(25)s(-1) on the dayside and 1x10(25)s(-1) on the nightside. The data also indicate a prominent variation with magnetic field orientation in that the ion distribution over regions with near-vertical field lines tends to be more extended on the dayside but more concentrated on the nightside, as compared to regions with near-horizontal field lines. These observations should have important implications on the pattern of ion dynamics in the vicinity of Mars. Plain Language Summary Prior to the Mars Atmosphere and Volatile Evolution mission, the only information on the composition of the Martian ionosphere came from the Viking Retarding Potential Analyzer data acquired on the dayside of Mars. Recently, extensive measurements made by the Mars Atmosphere and Volatile Evolution Neutral Gas and Ion Mass Spectrometer allow us to examine the Martian ionosphere not only in unprecedented detail but also on both the dayside and the nightside of the planet. By analyzing these data, we find that on each side, many of the detected ion species share a common density structure at altitudes above 300km. Meanwhile, such a structure is clearly influenced by the ambient magnetic fields, which are well known to be inhomogeneous on Mars and cluster over the Southern Hemisphere. Near strong magnetic fields, the Martian ionosphere tends to be more extended on the dayside but more concentrated on the nightside. These findings reveal the presence of supersonic ion outflow on Mars. Such an ion outflow makes a significant contribution to plasma escape, which influences the long-term evolution of the planet.National Natural Science Foundation of China [41525015, 41774186, 41525016]; Science and Technology Development Fund of Macau SAR [039/2013/A2, 119/2017/A3]; National Aeronautics and Space Administration (NASA); Swedish National Space Agency [135/13, 166/14]; Swedish Research Council (VR grant) [621-2013-4191]6 month embargo; published online: 13 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study
We present data from the sixth Cassini flyby of Titan (T5), showing that the magnetosphere of Saturn strongly interacts with the moon's ionosphere and exo-ionosphere. A simple electron ionisation model provides a reasonable agreement with the altitude structure of the ionosphere. Furthermore, we suggest that the dense and cold exo-ionosphere (from the exobase at 1430 km and outward to several Titan radii from the surface) can be explained by magnetospheric forcing and other transport processes whereas exospheric ionisation by impacting low energy electrons seems to play a minor role
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars
We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1-100ÎŒm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect
- âŠ