484 research outputs found

    Standing up for Legislators: Reevaluating Legislator Standing in the Wake of Kerr v. Hickenlooper

    Get PDF
    Hornbook constitutional law establishes that Congress and state legislatures are bodies of limited, enumerated powers, and common sense suggests they should get their act together and exercise them more often. But should legislators be permitted to sue in order to exercise their powers when another branch of government infringes on them unconstitutionally, or the body they represent unconstitutionally limits them? This Note argues that, at least in certain circumstances, they should. Following on the heels of the Tenth Circuit’s recent treatment of the issue in its Kerr v. Hickenlooper decisions, this Note proposes a redefinition of the legislator standing doctrine under which legislators can sue to remedy unconstitutional infringement of specific, enumerated powers. In doing so, this Note argues that prudential concerns that have historically barred legislators from suing should be disregarded, not only because the Supreme Court signaled as much in Lexmark International, Inc. v. Static Control Components, Inc., but also because these concerns are normatively ill considered. Rather, tying legislators’ injuries in fact to enumerated powers better aligns standing for legislators with standing for everyone else, while helping ensure courts are not stuck hearing suits they cannot and should not hear

    Standing up for Legislators: Reevaluating Legislator Standing in the Wake of Kerr v. Hickenlooper

    Get PDF
    Hornbook constitutional law establishes that Congress and state legislatures are bodies of limited, enumerated powers, and common sense suggests they should get their act together and exercise them more often. But should legislators be permitted to sue in order to exercise their powers when another branch of government infringes on them unconstitutionally, or the body they represent unconstitutionally limits them? This Note argues that, at least in certain circumstances, they should. Following on the heels of the Tenth Circuit’s recent treatment of the issue in its Kerr v. Hickenlooper decisions, this Note proposes a redefinition of the legislator standing doctrine under which legislators can sue to remedy unconstitutional infringement of specific, enumerated powers. In doing so, this Note argues that prudential concerns that have historically barred legislators from suing should be disregarded, not only because the Supreme Court signaled as much in Lexmark International, Inc. v. Static Control Components, Inc., but also because these concerns are normatively ill considered. Rather, tying legislators’ injuries in fact to enumerated powers better aligns standing for legislators with standing for everyone else, while helping ensure courts are not stuck hearing suits they cannot and should not hear

    Workshop - Amundsen Sea Embayment Tectonic and Glacial History - Programme and Abstracts

    Get PDF
    Overall Objective: Review existing data and identify priorities for future geoscience research (terrestrial, marine and airborne) in the Amundsen Sea embayment (ASE) region required to develop a better understanding of the past, present and future behaviour of this sector of the West Antarctic Ice Sheet (WAIS). Background: The ASE is the most rapidly changing sector of the WAIS and contains enough ice to raise global sea level by 1.2 m. Over the past few years considerable efforts have been made to acquire new data to improve knowledge of the geological structure, subglacial topography, continental shelf bathymetry and glacial history of this remote region. In this workshop we aim to review the current state of knowledge on the tectonic and glacial evolution of the Amundsen Sea embayment. Particular emphasis will be placed on work that will improve boundary conditions for ice sheet models (e.g. subglacial topography, shelf bathymetry, palaeotopography, heat flow and substrate types) and provide palaeo-data against which model outputs can be compared. There will also be a focus on plans and targets for future scientific drilling that will reveal the history of this sector of the WAIS and its sensitivity to major climate changes

    The Levantine Basin - crustal structure and origin

    Get PDF
    The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.06.4 km/s in the upper and 6.56.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the DamiettaLatakia Line and the BaltimHecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.33 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc

    West Antarctic Rift System in the Antarctic Peninsula

    Get PDF
    Decades after the recognition of the West Antarctic Rift System, and in spite of its global importance, the location and nature of the plate boundary it formed at are unknown east of the Byrd Subglacial Basin. Alternative constructions of the circuit of South Pacific plate boundaries suggest the presence of either a transcurrent plate boundary or a continuation of the extensional rift system. We identify George VI Sound, a curved depression separating Alexander Island from Palmer Land, as the easternmost basin of a rift system that terminated at a triple junction with the Antarctic Peninsula subduction zone. The history of the triple junction's third, transform, arm suggests extension started around 33.5-30 Ma. A more speculatively identified basin further west may have formed earlier during the same episode of rifting, starting around 43 Ma. Proposals of earlier Cenozoic relative motion between East and West Antarctica cannot be verified from this region. Citation: Eagles, G., R. D. Larter, K. Gohl, and A. P. M. Vaughan (2009), West Antarctic Rift System in the Antarctic Peninsula, Geophys. Res. Lett., 36, L21305, doi: 10.1029/2009GL040721

    4D Antarctica: a new effort aims to help bridge the gap between Antarctic crust and lithosphere structure and geothermal heat flux

    Get PDF
    Seismology, satellite-magnetic and aeromagnetic data, and sparse MT provide the only available geophysical proxies for large parts of Antarctica\u2019s Geothermal Heat Flux (GHF) due to the sparseness of direct measurements. However, these geophysical methods have yielded significantly different GHF estimates. This restricts our knowledge of Antarctica\u2019s contrasting tectono-thermal provinces and their influence on subglacial hydrology and ice sheet dynamics. For example, some models derived from aeromagnetic data predict remarkably high GHF in the interior of the West Antarctic Rift System (WARS), while other satellite magnetic and seismological models favour instead a significantly colder rift interior but higher GHF stretching from the Marie Byrd Land dome towards the Antarctic Peninsula, and beneath parts of the Transantarctic Mountains. Reconciling these differences in West Antarctica is imperative to better comprehend the degree to which the WARS influences the West Antarctic Ice Sheet, including thermal influences on GIA. Equally important, is quantifying geothermal heat flux variability in the generally colder but composite East Antarctic craton, especially beneath its giant marine-based basins. Here we present a new ESA project- 4D Antarctica that aims to better connect international Antarctic crust and lithosphere studies with GHF, and assess its influence on subglacial hydrology by analysing and modelling recent satellite and airborne geophysical datasets. The state of the art, hypotheses to test, and methodological approaches for five key study areas, including the Amundsen Sea Embayment, the Wilkes Subglacial Basin and the Totten catchment, the Recovery and Pensacola-Pole Basins and the Gamburtsev Sublgacial Mountains/East Antarctic Rift System are highlighted

    Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism

    Get PDF
    Highlights: • Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime • MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere • Continental insulation flow transferred HIMU mantle into the oceanic mantle New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly
    corecore