1,741 research outputs found
Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps
The analytical probability distribution of the quasi-2D (and purely 2D) ideal
and interacting Bose gas are investigated by using a canonical ensemble
approach. Using the analytical probability distribution of the condensate, the
statistical properties such as the mean occupation number and particle number
fluctuations of the condensate are calculated. Researches show that there is a
continuous crossover of the statistical properties from a quasi-2D to a purely
2D ideal or interacting gases. Different from the case of a 3D Bose gas, the
interaction between atoms changes in a deep way the nature of the particle
number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]
Estimating the benefits of traffic calming on through routes: A choice expermiment approach
Excessive speed is a major contributory factor in a large proportion of deaths and serious injuries on British roads. One approach to tackling the speeding problem is the use of traffic calming measures as a means of enforcing speed restrictions along roads running through populated areas. But speed reduction is only one of the benefits of traffic calming. This paper reports the results of a series of choice experiments that were used to investigate the willingness to pay (WTP) of a sample of local residents in three English towns for traffic calming measures that would achieve a range of reductions in speed, noise and community severance. Utility difference indices are estimated from logit models based on responses to the choice experiments. These revealed that local people had a positive WTP for a reduction in the negative impacts of road traffic and for more attractive, rather than basic, designs of the traffic calming measures. Some specifications of the logit model corroborate the hypothesis that WTP for reducing the negative impacts of traffic calming is lower for local households living outside visible and audible range of the road
Finite temperature bosonization
Finite temperature properties of a non-Fermi liquid system is one of the most
challenging probelms in current understanding of strongly correlated electron
systems. The paradigmatic arena for studying non-Fermi liquids is in one
dimension, where the concept of a Luttinger liquid has arisen. The existence of
a critical point at zero temperature in one dimensional systems, and the fact
that experiments are all undertaken at finite temperature, implies a need for
these one dimensional systems to be examined at finite temperature.
Accordingly, we extended the well-known bosonization method of one dimensional
electron systems to finite temperatures. We have used this new bosonization
method to calculate finite temperature asymptotic correlation functions for
linear fermions, the Tomonaga-Luttinger model, and the Hubbard model.Comment: REVTex, 48 page
Perceptions of Facial Expressions of Emotion in Autism Spectrum Disorders: Reading the “minds eye” Using Reverse Correlation
One of the “primary social deficits” of Autism Spectrum Disorders (ASDs) is understanding the emotions of others, yet current literature is inconclusive as to whether individuals with ASD perceive basic facial expressions of emotion differently from typically developed (TD) individuals [Simmons, et al. 2009, Vision Research, 49, 12705-2739] and, if so, which specific emotions are confused
Giving hope, ticking boxes or securing services? A qualitative study of respiratory physiotherapists' views on goal-setting with people with chronic obstructive pulmonary disease.
OBJECTIVE: To explore respiratory physiotherapists' views and experiences of using goal-setting with people with chronic obstructive pulmonary disease in rehabilitation settings. PARTICIPANTS: A total of 17 respiratory physiotherapists with ⩾12 months current or previous experience of working with patients with chronic obstructive pulmonary disease in a non-acute setting. Participants were diverse in relation to age (25-49 years), sex (13 women), experience (Agenda for Change bands 6-8) and geographic location. METHOD: Data were collected via face-to-face qualitative in-depth interviews (40-70 minutes) using a semi-structured interview guide. Interview locations were selected by participants (included participants' homes, public places and University). Interviews followed an interview guide, were audio-recorded and transcribed verbatim. DATA ANALYSIS: Data were analysed using thematic analysis; constant comparison was made within and between accounts, and negative case analysis was used. RESULTS: Three themes emerged through the process of analysis: (1) 'Explaining goal-setting'; (2) 'Working with goals'; and (3) 'Influences on collaborative goal-setting'. Goal-setting practices among respiratory physiotherapists varied considerably. Collaborative goal-setting was described as challenging and was sometimes driven by service need rather than patient values. Lack of training in collaborative goal-setting at both undergraduate and postgraduate level was also seen as an issue. CONCLUSION: Respiratory physiotherapists reflected uncertainties around the use of goal-setting in their practice, and conflict between patients' goals and organisational demands. This work highlights a need for wider discussion to clarify the purpose and implementation of goal-setting in respiratory rehabilitation
The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2
NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is
associated with two energetic bipolar outflows and displays clear signs of the
presence of a hot core. It has been extensively observed with ground based
telescopes and within the WISH Guaranteed Time Herschel Key Program. We present
new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC
7129 FIRS 2. Combining these observations with Herschel data and modeling their
emissions, we constrain the C18O and HDO abundance profiles across the
protostellar envelope. In particular, we derive the abundance of C18O and HDO
in the hot core. The intensities of the C18O lines are well reproduced assuming
that the C18O abundance decreases through the protostellar envelope from the
outer edge towards the centre until the point where the gas and dust reach the
CO evaporation temperature (~20-25 K) where the C18O is released back to the
gas phase. Once the C18O is released to the gas phase, the modelled C18O
abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the
reference abundance. This result is supported by the non-detection of C18O 9-8,
which proves that even in the hot core (T_k>100 K) the CO abundance must be 10
times lower than the reference value. Several scenarios are discussed to
explain this C18O deficiency. One possible explanation is that during the
pre-stellar and protostellar phase, the CO is removed from the grain mantles by
reactions to form more complex molecules. Our HDO modeling shows that the
emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core
(T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010),
we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM
protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS
16293-2422.Comment: 10 pages, 7 figure
Temperature dependent fluctuations in the two-dimensional XY model
We present a detailed investigation of the probability density function (PDF)
of order parameter fluctuations in the finite two-dimensional XY (2dXY) model.
In the low temperature critical phase of this model, the PDF approaches a
universal non-Gaussian limit distribution in the limit T-->0. Our analysis
resolves the question of temperature dependence of the PDF in this regime, for
which conflicting results have been reported. We show analytically that a weak
temperature dependence results from the inclusion of multiple loop graphs in a
previously-derived graphical expansion. This is confirmed by numerical
simulations on two controlled approximations to the 2dXY model: the Harmonic
and ``Harmonic XY'' models. The Harmonic model has no
Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes
progressively less skewed with increasing temperature until it closely
approximates a Gaussian function above T ~ 4\pi. Near to that temperature we
find some evidence of a phase transition, although our observations appear to
exclude a thermodynamic singularity.Comment: 15 pages, 5 figures and 1 tabl
Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation
By numerical calculation, the Planck spectrum with zero-point radiation is
shown to satisfy a natural maximum-entropy principle whereas alternative
choices of spectra do not. Specifically, if we consider a set of
conducting-walled boxes, each with a partition placed at a different location
in the box, so that across the collection of boxes the partitions are uniformly
spaced across the volume, then the Planck spectrum correspond to that spectrum
of random radiation (having constant energy kT per normal mode at low
frequencies and zero-point energy (1/2)hw per normal mode at high frequencies)
which gives maximum uniformity across the collection of boxes for the radiation
energy per box. The analysis involves Casimir energies and zero-point radiation
which do not usually appear in thermodynamic analyses. For simplicity, the
analysis is presented for waves in one space dimension.Comment: 11 page
The Molecular Condensations Ahead of Herbig-Haro Objects. III. Radiative and dynamical perturbations of the HH 2 condensation
We have carried out an extensive observational study (from BIMA data) and
made a preliminary theoretical investigation of the molecular gas around HH2.
The molecular maps show a very complex morphological, kinematical and chemical
structure. The overall main conclusion of this work confirms the findings of
Paper I and II, by demonstrating that in addition to the strong photochemical
effects caused by penetration of the UV photons from HH2 into molecular cloud,
a range of complex radiative and dynamical interactions occur. Thus, despite
the apparent `quiescent' nature of the molecular cloud ahead of HH2, the
kinematical properties observed within the field of view suggest that it is
possibly being driven out by powerful winds from the VLA 1 protostar.Comment: 20 pages. Accepted for publication to Astronomy & Astrophysic
Impact of grain evolution on the chemical structure of protoplanetary disks
We study the impact of dust evolution in a protoplanetary disk around a T
Tauri star on the disk chemical composition. For the first time we utilize a
comprehensive model of dust evolution which includes growth, fragmentation and
sedimentation. Specific attention is paid to the influence of grain evolution
on the penetration of the UV field in the disk. A chemical model that includes
a comprehensive set of gas phase and grain surface chemical reactions is used
to simulate the chemical structure of the disk. The main effect of the grain
evolution on the disk chemical composition comes from sedimentation, and, to a
lesser degree, from the reduction of the total grain surface area. The net
effect of grain growth is suppressed by the fragmentation process which
maintains a population of small grains, dominating the total grain surface
area. We consider three models of dust properties. In model GS both growth and
sedimentation are taken into account. In models A5 and A4 all grains are
assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with
constant gas-to-dust mass ratio of 100. Like in previous studies, the
"three-layer" pattern (midplane, molecular layer, hot atmosphere) in the disk
chemical structure is preserved in all models, but shifted closer to the
midplane in models with increased grain size (GS and A4). Unlike other similar
studies, we find that in models GS and A4 column densities of most gas-phase
species are enhanced by 1-3 orders of magnitude relative to those in a model
with pristine dust (A5), while column densities of their surface counterparts
are decreased. We show that column densities of certain species, like C2H,
HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN
abundance ratio which are accessible with Herschel and ALMA can be used as
observational tracers of early stages of the grain evolution process in
protoplanetary disks.Comment: 50 pages, 4 tables, 11 figures, accepted to the Ap
- …
