297 research outputs found

    Surface modification of stainless steel for biomedical applications: Revisiting a century-old material

    Get PDF
    Stainless steel (SS) has been widely used as a material for fabricating cardiovascular stents/valves, orthopedic prosthesis, and other devices and implants used in biomedicine due to its malleability and resistance to corrosion and fatigue. Despite its good mechanical properties, SS (as other metals) lacks biofunctionality. To be successfully used as a biomaterial, SS must be made resistant to the biological environment by increasing its anti-fouling properties, preventing biofilm formation (passive surface modification), and imparting functionality for eluting a specific drug or capturing selected cells (active surface modification); these features depend on the final application. Various physico-chemical techniques, including plasma vapor deposition, electrochemical treatment, and attachment of different linkers that add functional groups, are used to obtain SS with increased corrosion resistance, improved osseointegration capabilities, added hemocompatibility, and enhanced antibacterial properties. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review aims to fill this gap, by surveying the literature on SS surface modification methods, as well as modification routes tailored for specific biomedical applications. STATEMENT OF SIGNIFICANCE: Stainless steel (SS) is widely used in many biomedical applications including bone implants and cardiovascular stents due to its good mechanical properties, biocompatibility and low price. Surface modification allows improving its characteristics without compromising its important bulk properties. SS with improved blood compatibility (blood contacting implants), enhanced ability to resist bacterial infection (long-term devices), better integration with a tissue (bone implants) are examples of successful SS surface modifications. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review paper aims to fill this gap, by surveying the literature on SS surface modification methods, as well as to provide guidance for selecting appropriate modification routes tailored for specific biomedical applications.Accepted manuscrip

    Microencapsulated islet allografts in diabetic NOD mice and nonhuman primates

    Get PDF
    OBJECTIVE: Our goal was to assess the efficacy of encapsulated allogeneic islets transplanted in diabetic NOD mice and streptozotocin (STZ)-diabetic nonhuman primates (NHPs).MATERIALS AND METHODS: Murine or NHP islets were microencapsulated and transplanted in non-immunosuppressed mice or NHPs given clinically-acceptable immunosuppressive regimens, respectively. Two NHPs were treated with autologous mesenchymal stem cells (MSCs) and peri-transplant oxygen therapy. Different transplant sites (intraperitoneal [i.p.], omental pouch, omental surface, and bursa omentalis) were tested in separate NHPs. Graft function was monitored by exogenous insulin requirements, fasting blood glucose levels, glucose tolerance tests, percent hemoglobin A1c (% HbA1c), and C-peptide levels. In vitro assessment of grafts included histology, immunohistochemistry, and viability staining; host immune responses were characterized by flow cytometry and cytokine/chemokine multiplex ELISAS.RESULTS: Microencapsulated islet allografts functioned long-term i.p. in diabetic NOD mice without immunosuppression, but for a relatively short time in immunosuppressed NHPs. In the NHPs, encapsulated allo-islets initially reduced hyperglycemia, decreased exogenous insulin requirements, elevated C-peptide levels, and lowered % HbA1c in plasma, but graft function diminished with time, regardless of transplant site. At necropsy, microcapsules were intact and non-fibrotic, but many islets exhibited volume loss, central necrosis and endogenous markers of hypoxia. Animals receiving supplemental oxygen and autologous MSCs showed improved graft function for a longer post-transplant period. In diabetic NHPs and mice, cell-free microcapsules did not elicit a fibrotic response.CONCLUSIONS: The evidence suggested that hypoxia was a major factor for damage to encapsulated islets in vivo. To achieve long-term function, new approaches must be developed to increase the oxygen supply to microencapsulated islets and/or identify donor insulin-secreting cells which can tolerate hypoxia.</p

    Thermal stratification and meromixis in four dilute temperate zone lakes

    Get PDF
    Four adjacent lakes (Arco, Budd, Deming, and Josephine) within Itasca State Park in Minnesota, USA, are reported to be meromictic in the scientific literature. However, seasonally persistent chemoclines have never been documented. We collected seasonal profiles of temperature and specific conductance and placed temperature sensor chains in two lakes for ∼1 year to explore whether these lakes remain stratified through seasonal mixing events and what factors contribute to their stability. The results indicate that all lakes are predominantly thermally stratified and are prone to mixing in isothermal periods during spring and fall. Despite brief, semi-annual erosion of thermal stratification, Deming Lake showed no signs of complete mixing from 2006–2009 and 2019–2022 and is likely meromictic. However, the other lakes are not convincingly meromictic. Geochemical data indicate that water in Budd Lake, which contains the most water, is predominantly sourced from precipitation. The water in the other three lakes is of the calcium–magnesium–bicarbonate type, reflecting a source of water that has interacted with the deglaciated landscape. δ18OH2O and δ2HH2O measurements indicate the lakes are supplied by precipitation modified by evaporation. Josephine, Arco, and Deming lakes sit in a valley with likely permeable sediments and may be hydrologically connected through wetlands and recharged with shallow groundwater, as no streams are present. The water residence time in meromictic Deming Lake is short (100 d), yet it maintains a large reservoir of dissolved iron, indicating that shallow groundwater may be an additional source of water and dissolved ions. All four lakes develop subsurface chlorophyll maxima layers during the summer. All lakes also develop subsurface oxygen maxima that may result from oxygen trapping in the spring by rapidly developed summer thermoclines. Documenting the mixing status and general chemistry of these lakes enhances their utility and accessibility for future biogeochemical studies, which is important as lake stratification and anoxia are becoming more prevalent due to changes in climate and land use.</p

    Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness

    Get PDF
    AIM: Mapping tree species richness across the tropics is of great interest for effective conservation and biodiversity management. In this study, we evaluated the potential of full‐waveform lidar data for mapping tree species richness across the tropics by relating measurements of vertical canopy structure, as a proxy for the occupation of vertical niche space, to tree species richness. LOCATION: Tropics. TIME PERIOD: Present. MAJOR TAXA STUDIED: Trees. METHODS: First, we evaluated the characteristics of vertical canopy structure across 15 study sites using (simulated) large‐footprint full‐waveform lidar data (22 m diameter) and related these findings to in‐situ tree species information. Then, we developed structure–richness models at the local (within 25–50 ha plots), regional (biogeographical regions) and pan‐tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson regression. RESULTS: The results showed a weak structure–richness relationship at the local scale. At the regional scale (within a biogeographical region) a stronger relationship between canopy structure and tree species richness across different tropical forest types was found, for example across Central Africa and in South America [R^{2} ranging from .44–.56, root mean squared difference as a percentage of the mean (RMSD%) ranging between 23–61%]. Modelling the relationship pan‐tropically, across four continents, 39% of the variation in tree species richness could be explained with canopy structure alone (R^{2} = .39 and RMSD% = 43%, 0.25‐ha resolution). MAIN CONCLUSIONS: Our results may serve as a basis for the future development of a set of structure–richness models to map high resolution tree species richness using vertical canopy structure information from the Global Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by access to a larger set of field reference data for all tropical regions. Future research could also support the use of GEDI data in frameworks using environmental and spectral information for modelling tree species richness across the tropics

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    TLS2trees: A scalable tree segmentation pipeline for TLS data

    Get PDF
    1. Above-ground biomass (AGB) is an important metric used to quantify the mass of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated at the plot scale (typically 1 ha) using inventory measurements and allometry. In recent years, terrestrial laser scanning (TLS) has appeared as a disruptive technology that can generate a more accurate assessment of tree and plot scale AGB; however, operationalising TLS methods has had to overcome a number of challenges. One such challenge is the segmentation of individual trees from plot level point clouds that are required to estimate woody volume, this is often done manually (e.g. with interactive point cloud editing software) and can be very time consuming. 2. Here we present TLS2trees, an automated processing pipeline and set of Python command line tools that aims to redress this processing bottleneck. TLS2treesconsists of existing and new methods and is specifically designed to be horizontally scalable. The processing pipeline is demonstrated on 7.5 ha of TLS data cap�tured across 10 plots of seven forest types; from open savanna to dense tropical rainforest. 3. A total of 10,557 trees are segmented with TLS2trees: these are compared to 1281 manually segmented trees. Results indicate that TLS2trees performs well, particularly for larger trees (i.e. the cohort of largest trees that comprise 50% of total plot volume), where plot-wise tree volume bias is ±0.4 m3 and %RMSE is 60%. Segmentation performance decreases for smaller trees, for example where DBH ≤10 cm; a number of reasons are suggested including performance of se�mantic segmentation step. 4. The volume and scale of TLS data captured in forest plots is increasing. It is sug�gested that to fully utilise this data for activities such as monitoring, reporting and verification or as reference data for satellite missions an automated processing pipeline, such as TLS2trees, is required. To facilitate improvements to TLS2trees, as well as modification for other laser scanning modes (e.g. mobile and UAV laser scanning), TLS2trees is a free and open-source software

    The Importance of Consistent Global Forest Aboveground Biomass Product Validation

    Get PDF
    Several upcoming satellite missions have core science requirements to produce data for accurate forest aboveground biomass mapping. Largely because of these mission datasets, the number of available biomass products is expected to greatly increase over the coming decade. Despite the recognized importance of biomass mapping for a wide range of science, policy and management applications, there remains no community accepted standard for satellite-based biomass map validation. The Committee on Earth Observing Satellites (CEOS) is developing a protocol to fill this need in advance of the next generation of biomass-relevant satellites, and this paper presents a review of biomass validation practices from a CEOS perspective. We outline the wide range of anticipated user requirements for product accuracy assessment and provide recommendations for the validation of biomass products. These recommendations include the collection of new, high-quality in situ data and the use of airborne lidar biomass maps as tools toward transparent multi-resolution validation. Adoption of community-vetted validation standards and practices will facilitate the uptake of the next generation of biomass products

    Security (studies) and the limits of critique: why we should think through struggle

    Get PDF
    This paper addresses the political and epistemological stakes of knowledge production in post-structuralist Critical Security Studies. It opens a research agenda in which struggles against dominant regimes of power/knowledge are entry-points for analysis. Despite attempts to gain distance from the word ‘security’, through interrogation of wider practices and schemes of knowledge in which security practices are embedded, post-structuralist CSS too quickly reads security logics as determinative of modern/liberal forms of power and rule. At play is an unacknowledged ontological investment in ‘security’, structured by disciplinary commitments and policy discourse putatively critiqued. Through previous ethnographic research, we highlight how struggles over dispossession and oppression call the very frame of security into question, exposing violences inadmissible within that frame. Through the lens of security, the violence of wider strategies of containing and normalizing politics are rendered invisible, or a neutral backdrop against which security practices take place. Building on recent debates on critical security methods, we set out an agenda where struggle provokes an alternative mode of onto political investment in critical examination of power and order
    corecore