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Abstract Plant biodiversity supports life on Earth and provides a range of important ecosystem services, but is 11

under severe pressure by global change. Structural diversity plays a crucial role for carbon, water and energy 12

cycles and animal habitats. However, it is very difficult to map and monitor over large areas, limiting our ability 13

to assess the status of biodiversity and predict change. NASA’s Global Ecosystem Dynamics Investigation (GEDI) 14

provides a new opportunity to measure 3D plant canopy structure of the world’s temperate, Mediterranean and 15

tropical ecosystems, but its potential to map structural diversity is not yet tested. Here, we use wall-to-wall airborne 16

laser scanning (ALS) to simulate GEDI data (GEDIsim) over 7380 km2 in the southern Sierra Nevada mountains in 17

California, and evaluate how well GEDI’s sampling scheme captures patterns of structural diversity. We evaluate 18

functional richness and functional beta diversity in a biodiversity hot spot. GEDIsim performed well for trait 19

retrievals (r2 = 0.68) and functional richness mapping (r2 = 0.75) compared to ALS retrievals, despite lower 20

correlations in complex terrain with steep slopes. Functional richness patterns were strongly associated with soil 21

organic carbon stocks and density as well as variables related to water availability, and could be appropriately 22

mapped by GEDIsim with and without cloud cover. Functional beta diversity was more strongly related to local 23

changes in topography and more challenging to map, especially with decreasing sampling density. The reduced 24

number of GEDIsim shots when simulating cloud cover lead to a strong overestimation of beta diversity and a 25

reduction of r2 from 0.64 to 0.40 compared to ALS. The ability to map functional richness has been demonstrated 26

with potential application at continental scales that could be transformative for our understanding of large-scale 27

patterns of plant canopy structure, diversity and potential links to animal diversity, movement and habitats. 28

Introduction 29

NASA’s Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar sensor designed specifically for mea- 30

suring Earth surface structure including detailed information about 3D canopy structure of terrestrial vegetation 31

(Dubayah et al., 2020). GEDI was successfully launched and installed on the International Space Station (ISS) in 32

December 2018 and started its official operational data acquisition in March 2019. GEDI provides measurements 33

of the terrestrial Earth surface between 51.6◦ north and south, following the ISS path, over a minimum planned 34

mission length of two years. Besides the goal of providing a contiguous large-scale biomass map of the world’s 35

temperate and tropical forests at 1 km spatial resolution, GEDI provides a range of products that characterize 3D 36

vegetation canopy structure (Dubayah et al., 2020). The full-waveform sampling of GEDI allows the derivation of 37

vertically resolved information related to canopy height, density and layering (Hancock et al., 2019; Marselis et al., 38
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2019). Using this potential to map plant structural diversity can reveal large-scale biodiversity patterns and inform39

macroecology through its links to animal habitats, movement and diversity. However, since GEDI is a sampling40

instrument sending laser pulses that reach 25 m diameter on the ground, spaced at 60 m along track and 60041

m across track, it is not yet tested to what degree GEDI can capture large-scale diversity patterns and how GEDI42

observed structural traits relate to established measurements from airborne laser scanning (ALS) acquisitions.43

ALS combines light detection and ranging (lidar) with airborne scanning of actively emitted laser beams, result-44

ing in a geo-located measurement of returned laser energy that can be discretized into a 3D point cloud (Wehr &45

Lohr, 1999). It has proven successful in characterizing vegetation canopy structure and structural diversity for a46

range of traits, such as canopy height (Næsset & Økland, 2002), plant area index (PAI, Schneider et al., 2014),47

foliage height diversity (FHD, MacArthur & MacArthur, 1961), the vertical distribution of plant material in the48

canopy (either through PAI profiles (Marselis et al., 2018), or relative height (RH) of lidar energy (Drake et al.,49

2002; Dubayah et al., 2010)), and combinations thereof (Schneider et al., 2017). The study of structural diversity,50

in particular of forests, has gained increasing interest due to its importance for the carbon cycle, ecosystem services,51

plant and animal diversity, and habitat characterization (Bohn & Huth, 2017; Vierling et al., 2008; Davies & Asner,52

2014).53

How forests will react to ongoing global change is one of the main open questions in ecology and among the54

largest sources of uncertainty when predicting the carbon cycle and impacts of anthropogenic and climate change55

(Mitchard, 2018; Baccini et al., 2017; Hansen et al., 2019). At the same time, we are heading towards the sixth56

mass extinction of species on Earth (Ceballos et al., 2015; Barnosky et al., 2011) and suffering severe losses of57

biodiversity and key species (Isbell et al., 2017; Jones et al., 2018; D́ıaz et al., 2019), which calls for global58

biodiversity monitoring and immediate actions to be taken (Jetz et al., 2016). The Convention on Biological59

Diversity (CBD) helps guide those actions with a vision to ensure the valuation, conservation and restoration of60

biodiversity and its sustainable use through a set of policy-relevant targets (Mace et al., 2018). Many targets are61

not or only partially met though and the assessment of the state of biodiversity remains a challenge, as D́ıaz et al.62

(2019) point out summarizing the global assessment report of the Intergovernmental Platform on Biodiversity63

& Ecosystem Services (IPBES). Therefore, global mapping of structural diversity, as an important dimension of64

biodiversity and habitat quality, is of high importance and urgency (Jetz et al., 2016; Grassi et al., 2017).65

The diversity of vegetation canopies influences light distribution and utilization within the canopy, with higher66

structural diversity often leading to a more effective use of energy and thus increased ecosystem productivity67

(Bohn & Huth, 2017; Williams et al., 2017). However, the lack of spatially explicit data at the landscape level and68

across biomes, climatic and edaphic gradients on plant structure, diversity and function limits our understanding69

of the diversity-productivity relationship (Schimel et al., 2015; Jetz et al., 2016; Sandel et al., 2015). Additionally70

to GEDI, operational and upcoming missions to measure ecosystem function (e.g. OCO-2/3, Ecostress, FLEX),71

structure (e.g. ICESat-2, MOLI, BIOMASS), and physiology (e.g. HISUI, EnMap, SBG) will help to fill these gaps by72

providing (near) global coverage and study related processes globally (Stavros et al., 2017). Structural diversity73

is one key aspect that could not only be linked directly to certain functions but also be incorporated in dynamic74
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vegetation models to improve predictions of carbon fluxes under global change drivers (Antonarakis et al., 2014; 75

Rödig et al., 2018; Braghiere et al., 2019). 76

Increased structural diversity could provide a wider range of species niches and habitats supporting a larger 77

number of species. Therefore, lidar-derived structural diversity can be a proxy for biodiversity of plants and 78

animals (Vierling et al., 2008; Simonson et al., 2014). A range of ALS studies show good relationships between 79

structural lidar measurements to plant species diversity (Hernández-Stefanoni et al., 2014; Zellweger et al., 2017), 80

and Marselis et al. (2019) demonstrated the potential of GEDI to map tree species diversity in tropical forests. 81

Lidar measurements can provide unique features to map and characterize habitats for animals, such as birds 82

(Müller et al., 2010; Seavy et al., 2009), mammals (Zhao et al., 2012; Davies & Asner, 2014), and insects (Müller 83

& Brandl, 2009; Müller et al., 2014), and to be used in species distribution models (Randin et al., 2020). GEDI is 84

the first spaceborne sensor specifically designed to map 3D terrestrial vegetation structure, opening up a new era 85

for biogeography and macroecology. 86

In this study, we simulate GEDI data (GEDIsim) to assess its ability to capture diversity patterns from space. 87

Advantages of a simulation study are that there are neither temporal nor geolocation mismatches between the 88

reference airborne and the simulated spaceborne data and that a larger range of GEDI sampling densities can 89

be simulated, including simulations with and without cloud cover. We investigate the following four research 90

questions: (1) How do waveform-based structural traits of GEDIsim compare to discrete return ALS traits?, (2) Do 91

trait to trait relationships hold between ALS and GEDIsim?, (3) How does GEDIsim capture functional richness and 92

beta diversity with and without the simulation of cloud cover?, and (4) What is the relationship between functional 93

richness and beta diversity to the environment (climate, topography, soil)? We observe this over a heterogeneous 94

mountain landscape, which provides a hot spot for plant biodiversity in the temperate and Mediterranean biomes 95

comprising over 50% of California’s plant diversity with more than 3500 native species (CWWR, 1996). 96

Materials and Methods 97

Study Area 98

The study area is located between Yosemite and Sequoia National Park (NP) in the southern Sierra Nevada moun- 99

tains of California (Figure 1). The area spans 7380 km2 of Kings Canyon NP and parts of Sequoia, Sierra and 100

Inyo National Forests (NF). The area is characterized by complex mountainous terrain, spanning a total elevation 101

range of 3000 m. The climate is Mediterranean with cool winters and long warm summers, with mean annual 102

temperature ranging from -2.7 to 18.0◦C (Bioclim, Fick & Hijmans, 2017). Summers are dry and prone to fires, 103

with mean annual precipitation ranging from 125 to 1024 mm (Bioclim, Fick & Hijmans, 2017). Temperature and 104

precipitation are highly variable and characterized by strong gradients from west to east due to the terrain and 105

Pacific storm systems moving in from the west (CWWR, 1996). 106

The distribution of vegetation types is mainly driven by elevation and major valleys, but is variable locally de- 107

pending on water availability, evaporative demand and disturbance history from fires, storm blowdowns, insect 108
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Figure 1: The study area spans 7380 km2 of the Kings Canyon National Park (NP), Sequoia National Forest (NF),
Sierra NF and Inyo NF in the southern Sierra Nevada mountains in California. The map shows a color composite of
forest canopy height, density and depth, as the ratio of crown length to canopy height, at 20 m spatial resolution
derived from airborne laser scanning of NASA’s Airborne Snow Observatory. The right most panels show the
corresponding GEDI traits simulated for two years. The background map is an SRTM DTM hillshade with ESRI’s
reference overlay. Solid and dashed white lines show NP and NF boundaries from the National Park Service (NPS)
and National Forest Service (NFS). Right panels show close-ups of the map, NSF trails as black dashed lines,
roads as black lines from www.mapcruzin.com and www.openstreetmap.org, and streams as white lines from the
California Department of Fish and Wildlife (Christy, 2019).

and pathogen infestations, and avalanches (CWWR, 1996; Fites-Kaufman et al., 2007). The study area includes109

part of the lower elevation chaparral and oak savanna-type vegetation and some giant Sequoia trees in the south-110

western part. Dominant species are white and Douglas fir (A. concolor, P. menziesii), hemlocks (T. mertensiana),111

and lodgepole, sugar, ponderosa and Jeffrey pine (P. contorta, P. lambertiana, P. ponderosa, P. jeffreyi). Vegetation112

transitions to a zone of alpine vegetation at high elevations. Canyons are characterized by California laurel (U.113

californica), canyon live oak (Q. chrysolepis) and white alder, quaking aspen and tree willows (A. rhombifolia, P.114

tremuloides, S. lasiolepis) along streams and swampy meadows (CWWR, 1996; Fites-Kaufman et al., 2007).115

Laser Scanning Data116

Airborne laser scanning (ALS) data was acquired during summer of 2016 and 2017 as part of NASA’s Airborne117

Snow Observatory (ASO). A full-waveform scanning lidar system (Riegl Q1560) was operated at an altitude of118

6550 m asl, a nominal footprint size of 0.75 m to 1.5 m depending on elevation, and a swath width of ≈4.3 km.119

We combined multiple flight strips and optimized their co-registration and geolocation accuracy following Ferraz120
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et al. (2018) to create a dense point cloud with an average of 6 pts/m2. A Delaunay triangulation was calculated 121

from the points classified as ground to create the digital terrain model (DTM) and normalize the point cloud by 122

the DTM. Additional details about the point cloud acquisition, processing and the data set itself will be published 123

in Ferraz et al. (in preparation). 124

Spaceborne laser scanning data was simulated according to the expected GEDI sensor and acquisition character- 125

istics using the approach of Hancock et al. (2019), which was previously tested (Marselis et al., 2019; Duncanson 126

et al., 2020) and validated against NASA’s airborne Land, Vegetation and Ice Sensor (LVIS) and related products 127

(Hancock et al., 2019). We simulated two years of operational mission data assuming a 5% data transmission loss 128

and 60% power allocation time, resulting in 395 days of data acquisition. This leads to 594,462 GEDIsim shots in 129

total and 81 shots per square kilometer on average. However, GEDI’s laser beam at 1064 nm does not penetrate 130

clouds. Since cloud cover is highly clustered and mainly persistent at very high elevations, we used the cloud 131

climatology data set by Wilson & Jetz (2016) to simulate the expected GEDIsim coverage. We randomly removed a 132

percentage of days per month and 1 km2 pixel from GEDIsim based on the average monthly 1 km2 cloud frequency 133

calculated based on the years 2000 to 2014 (Wilson & Jetz, 2016). This does not fully account for spatial cluster- 134

ing of clouds exceeding the 1 km2 scale, which does not influence the diversity metrics derived at the same scale 135

but might lead to more randomly distributed data gaps in the final maps. The final GEDIsim coverage over time 136

simulated with cloud cover is shown in Suppl. Fig. S1. 137

Functional Trait Mapping 138

We used the approach of Schneider et al. (2014, 2017) to map canopy height, relative heights (RH) as percentiles 139

of the vertical distribution of canopy points at 25, 50, 75 and 95%, plant area index (PAI) for the whole vertical 140

column and per 10 m height layers (PAI0-10, PAI10-20, PAI20-30, PAI30-40) and foliage height diversity (FHD) 141

from ASO ALS data. Additionally, we calculated the canopy ratio (CR) as the percentage of canopy depth to canopy 142

height as follows: 143

CR =
RH98−RH25

RH98
. (1)

The above mentioned traits are also output of the GEDI simulator, and were used to test the potential of GEDIsim. 144

Relative height refers to the vertical distribution of returned lidar energy (mostly following the distribution of plant 145

material), whereas plant area index defines plant area per unit ground area for a given vertical extent. An RH25 146

value of 6 m means that 25% of energy is located below 6 m from the ground, and a PAI0-10 of 2 means that there 147

are 2 m2 of leaves and branches per m2 ground within 10 m from the ground. In both cases, the ground location 148

has to be known. Here, we used GEDIsim traits derived using gaussian fitting to detect the ground. It has to be 149

noted that for GEDIsim RH and FHD the full GEDIsim waveform was used as for the GEDI level 2 products. The 150

traits were derived relative to the ground location but including ground energy due to the difficulty of separating 151

ground and canopy energy with long pulses on slopes, whereas for the ALS RH metrics only canopy points above 152

ground were used. We applied a correction factor to the GEDIsim RH values to limit the maximum height at very 153
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steep slopes (>≈50◦) for that reason (see Supplementary Figure S2 for more details). CR was then calculated using154

corrected GEDIsim RH as defined above (Eq. 1). Including ground energy in the case of GEDIsim also changes the155

interpretation of GEDIsim CR, since it is not only a function of vegetation height distribution but also fractional156

cover and the distribution of ground energy.157

The GEDIsim metrics were calculated at the footprint level following the specifications of GEDI (Gaussian energy158

distribution within footprint with about 80% of the energy contained in a 22 m diameter). Therefore, we calculated159

the ALS area-based metrics on a 20 m grid to approximate a similar spatial grain.160

Functional Diversity Mapping161

We followed the concept of Schneider et al. (2017) to map plant functional diversity based on morphological162

canopy structure traits. Additionally to canopy height, density (PAI) and layering (FHD) which has been success-163

fully mapped by Schneider et al. (2017) for a range of scales, we also included canopy ratio and the density of164

plant material from 0 to 10 m above ground. These are important descriptors of the canopy structure related to the165

compactness and filling of the canopy space as well as the presence of understory and low vegetation. To derive166

functional diversity, we analyzed the distribution of pixels or GEDIsim shots of an area of interest (e.g. 1 km2) in167

the functional space defined by the five traits described above.168

We adapted the concept of Schneider et al. (2017) to work with trait probability densities (TPD) in the functional169

trait space following Carmona et al. (2016b), allowing the derivation of functional richness (FRic) as the percentage170

of trait space occupied by a minimum density of pixels or GEDIsim shots (Fig. 2). In contrast to FRic derived as171

convex hull volume of pixels in trait space, this accounts for concave shapes or gaps in trait distributions. The172

approach works when dealing with varying sampling sizes per unit area, as is the case with the irregular spatial173

sampling of GEDI. Defining a density threshold for occupied space makes functional richness more robust and174

less susceptible to outliers than using the convex hull volume approach (Carmona et al., 2016a; Blonder, 2016).175

Moreover, the TPD approach provides a suitable concept to derive functional beta diversity (FBeta), defined as the176

non-overlapping areas of two density distributions from spatially separate areas (Carmona et al., 2016b, Fig. 2).177

For the functional diversity calculations, we linearly scaled the traits from 0 to 1 with a 0.1% cut off of extreme178

values. We calculated TPD estimates on a 5D sampling grid of the trait space at 0.1 intervals for 1 km2 spatial179

grid cells (mvksdensity in Matlab 2019a). We used the same grids for the calculation of ALS and GEDIsim trait180

densities. We then calculated functional richness as the percentage of number of trait space grid points with a181

TPD higher than 2 points per 0.1 kernel bandwidth. For functional beta diversity, we applied a moving window182

with a 3x3 neighborhood and calculated pair-wise functional beta diversity between each 1 km2 pixel and its eight183

neighbors. Since strongest trait turnover takes place within the first few kilometers (Suppl. Fig. S5), we decided184

for the smallest window size of 3x3 km2. We then calculated the average non-overlapping densities as functional185

beta diversity without applying a density threshold. Figure 2 illustrates the concept and sampling of the trait space186

for 1D, 2D, and 3D examples that can be extended to nD trait spaces.187
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Figure 2: Trait probability density (TPD) in one, two and three dimensions (1D, 2D, 3D) based on canopy height,
density as plant area index (PAI) and layering as foliage height diversity (FHD). This concept can by extended
to any number of dimensions (nD) and allows to derive functional richness and functional beta diversity, among
many other dimensions of functional diversity. We derived functional richness (FRic) as percentage of occupied
trait space and functional beta diversity (FBeta) as percentage of unique, non-overlapping probability density. The
example shows FRic for two adjacent 1 km2 pixels (Area 1 & 2) and its corresponding FBeta.

Statistical Analyses 188

We compared GEDIsim and ALS traits by direct trait correlation using linear, power-law and logarithmic regression. 189

We assess trait-to-trait relationships and compare traits in principal component space. We present the analysis for 190

three components in the results based on Suppl. Fig. S6, with the third component still explaining 4.3 and 5.5% of 191

the variance for ALS and GEDIsim traits (Suppl. Tab. S2). Since GEDIsim shots do not necessarily fall on ALS pixel 192

centers, we calculated ALS traits at 10 m resolution and used bilinear interpolation to derive an ALS trait average 193

at each GEDIsim shot location. 194

For interpretation of the functional diversity maps, we ran a random forest regression model to derive the most 195

important environmental predictors of functional richness and beta diversity from a comprehensive set of climate, 196

soil and topography variables from Fick & Hijmans (2017); Title & Bemmels (2018); Hengl et al. (2017); Conrad 197
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et al. (2015), see Suppl. Tab. S3, S4 and S5. In a first step, we selected the top 15 predictors of functional richness198

for each set based on predictor importance estimates from permutations of out-of-bag predictor observations of 300199

regression trees (fitrensemble, oobPermutedPredictorImportance in Matlab 2019a). We then applied a principal200

component analysis on the normalized predictors to map the major environmental patterns based on the first three201

components. We used the same 15 climate, soil and topography variables to estimate the importance on predicting202

beta diversity, and repeated the analysis using all 45 variables together.203

Results204

Functional Traits Comparison205

The first step in evaluating GEDI’s potential for mapping functional diversity is to compare GEDIsim traits to the206

ones derived from ALS data. On average, GEDIsim traits explained 68% of ALS trait variability for the 12 traits207

analyzed. Supplementary figure S3 shows the linear trait correlations with a tendency of higher GEDIsim values in208

steep areas of low vegetation height and density. The average r2 increases to 0.72 in areas with less steep slopes209

<10◦. Generally, estimates of the upper canopy are closer to ALS traits than from the mid- or understory, where210

GEDIsim RH values tend to be lower due to the inclusion of the ground energy. The most correlated traits are211

RH75, RH95 and maximum canopy height, as well as PAI in height layers of 10-20 m, 20-30 m, and 30-40 m with212

r2 ≥ 0.80. Most GEDIsim traits are linearly related to ALS traits, but CR and FHD show a stronger logarithmic and213

power-law relationship, respectively (see Suppl. Tab. S1).214

Trait to Trait Relationships215

Most plant functional traits show some degree of correlation with each other (Wright et al., 2004; D́ıaz et al.,216

2015). Those trait relationships can be important to characterize canopy structural types, as groups of plants with217

similar structural traits (Fahey et al., 2019; Huesca et al., 2019), but can also be indicators of stress, successional218

stage or disturbance (Dwyer & Laughlin, 2017; Lohbeck et al., 2012). Trait relationships generally hold between219

ALS and GEDIsim estimates, with GEDIsim capturing 59% of variation in ALS trait correlations (Fig. 3, see Suppl.220

Fig. S4 for the full matrix). GEDIsim traits include information from the canopy and the underlying terrain, and221

therefore show lower correlations among each other. Differences also arise from the differing trait distribution of222

PAI in the lowest layer 0 - 10 m above ground.223

Major Trait Axes224

We applied a principal component analysis to show major trait axes, possible correlations and trait contributions225

(loadings) to the first three components (Fig. 4). Small loadings could suggest little information content or226

redundancy with other traits, and thus guide trait selection. Height related traits mainly contributed to the first227

component, explaining 78% and 69% of total ALS and GEDIsim variance (see Suppl. Tab. S2). The contribution is228
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Figure 3: Correlation matrix of structural traits derived from airborne laser scanning (ALS) in the upper right half
(yellow) and GEDIsim in the lower left half (blue). Note that patterns of the density scatter plots are mirrored
due to the switch of trait axes. Darker color indicates higher density of points. Trait histograms are shown in the
diagonal of the matrix. Trait relationships are generally well maintained between ALS and GEDIsim, with strongest
correlations among relative height values (RH) and lowest correlations of canopy ratio (CR) and plant area index
(PAI) to other traits.
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similar and none of the RH traits emerge as strong independent components, but the spread among the second and229

third component shows independent contributions to trait variability. FHD behaves similarly and is close to canopy230

height, but also shows a strong contribution to the first principal component on its own. Some of the strongest231

and most independent loadings stem from CR, PAI and density of the understory (PAI 0-10 m). These are strong232

contributors to the second and third components, explaining 13% and 4% of ALS and 18% and 6% of GEDIsim233

variance. Conversely, PAI layers above 10 m do not have a strong contribution, indicating little added information234

content due to many zero values and correlations to total PAI. This is the case for both ALS and GEDIsim derived235

traits.236

GEDI’s Ability to Map Functional Diversity from Space237

We mapped functional richness and functional beta diversity from five structural traits, namely mean canopy238

height, plant area index, PAI at 0-10 m, foliage height diversity and canopy ratio, at 1 km2 spatial resolution239

(Fig. 5). FRic is generally higher along the main valleys and in the western part of the study area, and lower in240

the central area and higher elevations. These patterns are related to temperature seasonality, soil organic carbon241

stock, cation exchange capacity and the generalized DTM, which are the best predictors of functional richness at242

the landscape scale based on a random forest regression model (Fig. 6). Soil organic carbon stock and variables243

controlling water availability through runoff (distance to river), radiation (sky view factor, diurnal anisotropic244

heating), and soil properties (occurrence of bedrock and distance to bedrock) are most important when combining245

all environmental variables in one model. These general patterns are well captured by GEDIsim too, both with and246

without the simulation of clouds (r2 of 0.85, and r2 of 0.75 with cloud cover). There is a slight underestimation247

of FRic in areas with denser, taller and more diverse forest canopies, whereas GEDIsim overestimates FRic in areas248

with lower vegetation and complex steep terrain (Suppl. Figs. S7, S9). Differences do not change much with cloud249

cover, but tend to be a bit more negatively biased due to the reduced number of samples (Suppl. Figs. S8, S10).250

Functional beta diversity is an indicator of trait turnover and unique niche space that is not shared from one251

area to another (Carmona et al., 2016b). Therefore, Fbeta is high along the major valleys and canyons, where252

there is a strong shift in plant community traits between riparian and shrubby canyon vegetation to more open,253

mixed coniferous forests (Fig. 5). Moreover, FBeta is high at higher elevations, where vegetation gets patchy and its254

occurrence and structure are more strongly determined by geomorphological activity, avalanches, microtopography255

and soil. This is best described by changes in topography (ridge level, generalized DTM, sky view factor) followed256

by the occurrence of bedrock and changes in climatic moisture index (Fig. 6). GEDIsim captures some of these257

patterns, but with an overestimation when simulating clouds. The trait turnover along major valleys is less visible258

in GEDIsim derived maps, and the error is strongly related to sampling density (Suppl. Figs. S11, S12). The259

reduced number of GEDIsim shots when simulating cloud cover leads to a strong overestimation of beta diversity260

and a reduction of r2 from 0.64 to 0.40 compared to ALS (Suppl. Fig. S8).261

c©2020. All rights reserved. 10 Schneider et al.

Page 10 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-108324.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Figure 4: Principal component analysis of ALS (top row, orange) and GEDIsim (bottom row, blue) traits and their
contributions to the first three components. The 12 structural traits are relative heights at 25-99% percentiles
(RH25-RH99), foliage height diversity (FHD), plant area index (PAI), PAI at 10 m height intervals (PAI0-10 to
PAI30-40) and canopy ratio (CR). The length of the lines corresponds to the loadings or strength of contribution of
the traits to the principal components. Traits with small loadings are not labeled.
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Figure 5: Functional richness (top row) and functional beta diversity (bottom row) at 1 km resolution in percent of
filled and non-overlapping trait probability density space, respectively. Maps on the left are derived from spatially
continuous airborne laser scanning (ALS) traits, compared to maps derived from simulated GEDI data (GEDIsim)
without (middle) and with cloud cover (right).

Discussion262

GEDI is designed to provide 3D canopy structure information from space by sampling vertical canopy profiles with263

a 25 m footprint laser. The measured laser waveform includes the energy returned from the ground, which can264

be strongly elongated in steep terrain. Ground energy might be mixed with energy returned from understory265

vegetation or small trees. In this case, disentangling the contribution from ground and vegetation canopy is266

challenging and can lead to inaccurate estimates of canopy structure traits (Ilangakoon et al., in review), such as267

the systematic overestimation of high canopy ratio and low foliage height diversity. In extreme cases, complex268

steep terrain with boulders can look like vegetation due to multi-modal ground returns (Hancock et al., 2012).269

Considering the challenging terrain, GEDIsim performed well in terms of structural trait retrieval with best results270

in flat areas and for traits related to the upper canopy. Further research is needed to develop an algorithm to271

decompose the waveform into ground and canopy energy, but issues might remain in steep areas with dense272

understory vegetation.273

Functional diversity estimates are dependent on the accuracy and selection of traits and the spatial scale used274
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Figure 6: Environmental variables grouped by climate, soil and topography, and their importance to predict func-
tional richness (FRic) and functional beta diversity (FBeta). The maps illustrate the major axes of variation, being
colored by the first three principal components of the 15 best predictors of FRic. The panels below the maps show
relative importance of the variables to predict FRic (middle) and FBeta (bottom) for each group of variables. The
colors correspond to their contribution to the first three components as shown on the maps. The dashed bars show
the relative importance when all 45 variables are used in one model.

to derive them (Funk et al., 2017; Anderson, 2018). For functional diversity analyses, we suggest to include plant 275

functional traits that are functionally relevant in terms of growth, reproduction or survival (Violle et al., 2007; 276

D́ıaz et al., 2015), ecologically relevant in terms of competition, niche space or succession (Kunstler et al., 2016; 277

Cadotte, 2017), and that build independent trait axes without functional redundancy or over-representation of one 278

trait axis (Petchey & Gaston, 2006). We followed this suggestion and the principal component analysis showing 279

five major trait axes for both ALS and GEDIsim traits. Optimizing the trait selection towards best correlation to 280

ALS could have potentially improved GEDIsim results, but also changed the meaning and relevance of functional 281

diversity. The impact of changing trait combinations and number of traits on diversity estimates is not assessed 282

here, but can be relevant depending on the science question, application and scale (Roscher et al., 2012; Zhu 283

et al., 2017; Jarzyna & Jetz, 2018). Trait selection might be less critical at large scales where traits and their 284
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spatial organization are more likely to be correlated, as was shown by Schneider et al. (2017) for diversity of285

morphological and physiological forest traits along an environmental gradient.286

We mapped functional diversity at 1 km resolution, which we think is the smallest reasonable resolution for our287

application with 72% of pixels having more than 20 and 44% more than 40 GEDIsim shots per pixel (see Suppl.288

Fig. S15). This number drops to only 12% and 0% respectively at 500 m resolution considering simulated cloud289

cover. The results also show that a lower resolution might be needed to create a gap-free diversity product of the290

area. The fusion with additional spatially continuous data sets like Sentinel, Landsat, Planet, or the upcoming291

NISAR might help to create a higher resolution gridded product. Nevertheless, the GEDIsim data analysis in this292

study indicate that GEDI will provide a unique spatial grain and extent on canopy structure and diversity, which has293

previously been unavailable and could help scale existing ground based trait and diversity maps. For example, the294

global trait maps of Bruelheide et al. (2018) are interpolated at 10 km with many remaining gaps, whereas Butler295

et al. (2017) modeled a continuous global coverage but for 50 km cells. Current global data sets of animal diversity296

are produced at 2◦ (≈200 km) by Hurlbert & Jetz (2007); Pollock et al. (2017). Functional richness calculated297

as the filled probability density space of five major canopy structure traits shows broad patterns of diversity cold298

and hot spots. The availability of water is strongly associated with those patterns in a Mediterranean climate with299

prolonged summmer dryness. Therefore, environmental variables related to soil water availability, evaporative300

demand and incident radiation, as well as distance to stream and precipitation are shaping the distribution of301

plant communities. These might be the main drivers of structural diversity, whereas the strong link of soil organic302

carbon stock and density with plant functional richness could be a result of the higher plant productivity and303

biomass in more diverse ecosystems. Many studies have shown positive effects of plant biodiversity on productivity304

(Liang et al., 2016; Huang et al., 2018), with a strong link through structural diversity as a regulator for radiation305

interception and increased resource use efficiency (Bohn & Huth, 2017; Williams et al., 2017). Those general306

patterns of functional richness agree with total species richness reported by Wathen et al. (2014) for the Kings307

Canyon NP, and are captured well both by GEDIsim simulated with and without clouds.308

Abiotic factors are shaping the distribution of plant structure and species, especially in a water and temperature309

limited system as presented here. However, the importance of individual variables has to be taken with care, since310

random forest feature importance can strongly vary depending on how many co-varying features were included in311

the analysis. Furthermore, the SoilGrids dataset was modeled with spatial covariates including long-term MODIS312

enhanced vegetation index, near and middle infrared reflectance and land surface temperature, among others313

(Hengl et al., 2017). Therefore, correlations to functional diversity might not purely reflect soil properties.314

Overestimation of functional richness happens in areas with low vegetation or sparse coverage and complex,315

steep terrain due to topography effects on the laser waveform discussed above. Underestimation occurs in areas of316

higher canopy structural complexity and tree height due to the spatial sampling of GEDI. Since functional richness317

is a measure of total occupied niche space, the spatial sampling and heterogeneity of the landscape will determine318

how much of the total trait diversity GEDI can capture. When sampling density decreases with increasing cloud319

cover, it is more likely to miss certain trait combinations and thus underestimate functional richness. This could320
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Figure 7: Prediction of possible over- and underestimation of GEDI diversity over California using a stepwise linear
regression model with terrain slope, topographic diversity, tree cover, cloud frequency and interaction terms. Areas
with no vegetation were masked when their greenest pixel of a year had an NDVI below 0.1.
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have implications for mapping tropical forests, which are especially effected by cloud cover but would require a321

dense sampling to capture the large heterogeneity of canopy structure. At our study site, a simple relationship322

between terrain slope, topographic diversity and tree cover can explain about a third of the observed over- and323

underestimation of functional richness (Suppl. Fig. S13 and S14), and could provide a guide to build hypotheses324

on where to expect potential over- and underestimation of diversity in California (Fig. 7). One caveat of the current325

approach is that we are not providing a ground validation, which is challenging and also potentially inaccurate at326

20 m grain and 1 km extent. Therefore, we rely on comparisons to state-of-the-art ALS with wall-to-wall coverage.327

Future research will be needed to further test this method at additional study sites, covering a larger range of328

vegetation types and environments, and with real GEDI data.329

Functional beta diversity is more complex, since it describes trait turnover and shifts in trait distributions from330

one region to another. At the scale of 1 km and 3x3 km neighborhoods, it is more related to trait turnover among331

large environmental gradients than local species beta diversity between communities. The beta diversity patterns332

shown in Fig. 5 are clearly reflecting the shifts in canopy structure between wetter and more densely vegetated333

valleys and canyons and drier open areas with sparser coniferous forests, best reflected by change in topographic334

variables. This is in line with Jucker et al. (2018), who found that topography is shaping the distribution of forest335

structure and diversity through its impact on microclimate and local soil variability, which might not be captured336

by the more broadly modeled global climate and soil data sets. Moreover, it shows the patchiness of vegetation at337

higher elevation, where canopy structure can change dramatically based on disturbance history. These patterns are338

captured by GEDIsim simulated without clouds, but disappear with decreasing sampling density. There is no clear339

threshold, but the errors seem to stabilize at around 40 or more samples per unit area in this study area (Suppl.340

Fig. S11 and S12), and potentially more in regions of higher local variability. Fusion with other structural data341

sets, e.g. from ICESat-2, might overcome issues due to low sampling density and may enable improved capabilities342

(Neuenschwander & Pitts, 2019).343

The implication of near-global maps of functional richness and beta diversity for assessing the state of biodiver-344

sity, as mandated by IPBES, and related CBD targets could be large, because it’s breaking the ground for new ways345

of observing ecosystem structure that have not been available before. Ecosystem structure has been identified as346

a key Essential Biodiversity Variable (EBV) class (Skidmore et al., 2015), and the proposed approach could con-347

tribute or be added to candidate EBVs as well as CBD targets 5 (Habitat loss, fragmentation and degradation), 7348

(Sustainable management) and 15 (carbon sequestration, ecosystem resilience), see O’Connor et al. (2015). In349

combination with models or other sources of biodiversity data, the mapping of functional richness and beta di-350

versity with GEDI could also help address CBD targets 9 (Control of invasive alien species), 11 (protected areas)351

and 14 (ecosystem services safeguarded), and more broadly help to sustainably manage forests and monitor land352

degradation and biodiversity loss (Sustainable Development Goal 15, D́ıaz et al., 2019). GEDI enables a whole353

suite of new ecosystem structure products that can be used for monitoring in the future (Dubayah et al., 2020).354

Finally, for a long time the diversity of plant canopy structure was neglected or oversimplified in global Earth355

system models, leading to potential errors in the radiation budget and underestimation of plant photosynthesis356
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(Braghiere et al., 2019). This could be changed with the availability of a GEDI diversity product and its integration 357

into dynamic vegetation models (Schimel et al., 2019). 358

Conclusion 359

GEDI provides unique measurements of 3D canopy structure from space, and the simulation study presented here 360

shows the potential to successfully characterize functional richness at large spatial scales. Care has to be taken 361

in steep areas with low or sparse vegetation cover to not mistakenly treat variation in ground returns as plant 362

functional richness. Implications for the understanding of large-scale patterns of plant canopy structure, structural 363

diversity and potential links to animal diversity, movement and habitats are immense, and could be transformative 364

for global ecology (Schimel et al., 2019). Our results suggest that functional richness could be estimated from GEDI 365

data with little influence by sampling density, whereas functional beta diversity shows large uncertainty in areas 366

of low coverage. Estimating biodiversity from functional traits could have a range of advantages. GEDI provides 367

consistent measurements of canopy height, layering and density over all of the world’s temperate, Mediterranean 368

and tropical forests, except for the discussed issues in mountainous areas and possible data gaps due to cloud cover. 369

This provides a new view on biodiversity, including intra-specific diversity and the vertical component of canopy 370

structure in a range of natural, managed and disturbed forests. This could help monitor biodiversity and policy 371

targets, and greatly improve the representation of plant canopies in dynamic vegetation and land surface models, 372

improving our understanding of the carbon cycle and ecological forecasting. 373

GEDI products are being released month by month on NASA’s LP DAAC since January 2020. Dubayah et al. 374

(2020) show the excellent fidelity of GEDI on-orbit waveforms compared to airborne lidar, but future research 375

is needed to test GEDI level 2 A and B products for functional diversity mapping across biomes, once sufficient 376

coverage is available at near-global extent. 377
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function. Nature, 529, 1–17. 446

D́ıaz, S., Settele, J., Brondizio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, 447

K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D. O., Pfaff, 448

A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R. R., Shin, Y.-J., Visseren-Hamakers, I., Willis, K., & Zayas, 449

C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 1327. 450

Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., Chazdon, R. L., Weishampel, J. F., & Prince, 451

S. (2002). Estimation of tropical forest structural characteristics, using large-footprint lidar. Remote Sensing of Environment, 452

79, 305–319. 453

Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, 454

J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P., Qi, W., & Silva, C. (2020). The Global Ecosystem 455

Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, (p. 456

100002). 457

Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofton, M. A., Blair, J. B., Hurtt, G. C., & Chazdon, R. L. (2010). Estimation 458

of tropical forest height and biomass dynamics using lidar remote sensing at la Selva, Costa Rica. Journal of Geophysical 459

Research: Biogeosciences, 115, 1–17. 460

Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C. A., Armston, J., Luthcke, 461

S. B., Hofton, M., Kellner, J. R., & Dubayah, R. (2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across 462

environmental gradients in Sonoma County, California. Remote Sensing of Environment, 242, 111779. 463

Dwyer, J. M., & Laughlin, D. C. (2017). Constraints on trait combinations explain climatic drivers of biodiversity: the importance 464

of trait covariance in community assembly. Ecology Letters, 20, 872–882. 465

Fahey, R., Atkins, J., Gough, C., Hardiman, B., Nave, L., Curtis, P., Tallant, J., Turner, L., Nadehoffer, K., Vogel, C., Scheuermann, 466

C., Stuart-Haentjens, E., Fotis, A., & Ricart., R. (2019). Defining a spectrum of integrative trait-based vegetation canopy 467

structural types. Ecological Applications, . 468

Ferraz, A., Saatchi, S., Bormann, K., & Painter, T. (2018). Fusion of NASA Airborne Snow Observatory (ASO) Lidar Time Series 469

over Mountain Forest Landscapes. Remote Sensing, 10, 164. 470

Ferraz, A., Schneider, F. D., Painter, T. H., Bormann, K. J., Hancock, S., & Schimel, D. S. (). From lidar waveforms to vegetation 471

products: 7380 km2 of high-resolution airborne and simulated GEDI data over the Sierra Nevada, California. Nature Scientific 472

Data, (p. in prep). 473

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Interna- 474

tional Journal of Climatology, 37, 4302–4315. 475

Fites-Kaufman, J. A., Rundel, P. W., Stephenson, N., & Weixelman, D. A. (2007). Montane and subalpine vegetation of the Sierra 476

Nevada and Cascade ranges. December 2013. 477

Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., 478

Williams, L., & Wright, J. (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. 479

Biological Reviews, 92, 1156–1173. 480

Grassi, G., House, J., Dentener, F., Federici, S., Den Elzen, M., & Penman, J. (2017). The key role of forests in meeting climate 481

targets requires science for credible mitigation. Nature Climate Change, 7, 220–226. 482

Hancock, S., Hofton, M., Sun, X., Tang, H., Kellner, J. R., Armston, J., Duncanson, L. I., & Dubayah, R. (2019). The GEDI 483

simulator: A large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth and Space 484

Science, (pp. 1–17). 485

Hancock, S., Lewis, P., Foster, M., Disney, M., & Muller, J.-P. (2012). Measuring forests with dual wavelength lidar: A simulation 486

study over topography. Agricultural and Forest Meteorology, 161, 123–133. 487

Hansen, M. C., Potapov, P., & Tyukavina, A. (2019). Comment on “Tropical forests are a net carbon source based on aboveground 488

measurements of gain and loss”. Science, 363, eaar3629. 489

c©2020. All rights reserved. 19 Schneider et al.

Page 19 of 22 AUTHOR SUBMITTED MANUSCRIPT - ERL-108324.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright,490
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Santos, G., & López-Merĺın, D. (2014). Improving species diversity and biomass estimates of tropical dry forests using495

airborne LiDAR. Remote Sensing, 6, 4741–4763.496

Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., Härdtle, W., von Oheimb, G., Yang, X., Liu,497
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Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., Price, B., 567

Rocchini, D., Schaepman, M., Schmid, B., Verburg, P., Wilson, A., Woodcock, P., Yoccoz, N., & Payne, D. (2020). Monitoring 568

biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 569

111626. 570
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