3,924 research outputs found
The rapid decline of the prompt emission in Gamma-Ray Bursts
Many gamma ray bursts (GRBs) have been observed with the Burst-Alert and
X-Ray telescopes of the Swift satellite. The successive `pulses' of these GRBs
end with a fast decline and a fast spectral softening, until they are overtaken
by another pulse, or the last pulse's decline is overtaken by a less
rapidly-varying `afterglow'. The fast decline-phase has been attributed, in the
currently-explored standard fireball model of GRBs, to `high-latitude'
synchrotron emission from a collision of two conical shells. This high latitude
emission does not explain the observed spectral softening. In contrast, the
temporal behaviour and the spectral evolution during the fast-decline phase
agree with the predictions of the cannonball model of GRBs.Comment: Four added figures comparing the evolution of the inferred effective
photon spectral index during the fast decline phase of the prompt emission in
14 selected Swift GRBS and the cannonball (CB) model predictio
Dark Matter Annihilation Signatures from Electroweak Bremsstrahlung
We examine observational signatures of dark matter annihilation in the Milky
Way arising from electroweak bremsstrahlung contributions to the annihilation
cross section. It has been known for some time that photon bremsstrahlung may
significantly boost DM annihilation yields. Recently, we have shown that
electroweak bremsstrahlung of W and Z gauge bosons can be the dominant
annihilation channel in some popular models with helicity-suppressed 2 --> 2
annihilation. W/Z-bremsstrahlung is particularly interesting because the gauge
bosons produced via annihilation subsequently decay to produce large correlated
fluxes of electrons, positrons, neutrinos, hadrons (including antiprotons) and
gamma rays, which are all of importance in indirect dark matter searches. Here
we calculate the spectra of stable annihilation products produced via
gamma/W/Z-bremsstrahlung. After modifying the fluxes to account for the
propagation through the Galaxy, we set upper bounds on the annihilation cross
section via a comparison with observational data. We show that stringent cosmic
ray antiproton limits preclude a sizable dark matter contribution to observed
cosmic ray positron fluxes in the class of models for which the bremsstrahlung
processes dominate.Comment: 11 pages, 6 figures. Updated to match PRD versio
Challenging GRB models through the broadband dataset of GRB060908
Context: Multiwavelength observations of gamma-ray burst prompt and afterglow
emission are a key tool to disentangle the various possible emission processes
and scenarios proposed to interpret the complex gamma-ray burst phenomenology.
Aims: We collected a large dataset on GRB060908 in order to carry out a
comprehensive analysis of the prompt emission as well as the early and late
afterglow. Methods: Data from Swift-BAT, -XRT and -UVOT together with data from
a number of different ground-based optical/NIR and millimeter telescopes
allowed us to follow the afterglow evolution from about a minute from the
high-energy event down to the host galaxy limit. We discuss the physical
parameters required to model these emissions. Results: The prompt emission of
GRB060908 was characterized by two main periods of activity, spaced by a few
seconds of low intensity, with a tight correlation between activity and
spectral hardness. Observations of the afterglow began less than one minute
after the high-energy event, when it was already in a decaying phase, and it
was characterized by a rather flat optical/NIR spectrum which can be
interpreted as due to a hard energy-distribution of the emitting electrons. On
the other hand, the X-ray spectrum of the afterglow could be fit by a rather
soft electron distribution. Conclusions: GRB060908 is a good example of a
gamma-ray burst with a rich multi-wavelength set of observations. The
availability of this dataset, built thanks to the joint efforts of many
different teams, allowed us to carry out stringent tests for various
interpretative scenarios showing that a satisfactorily modeling of this event
is challenging. In the future, similar efforts will enable us to obtain
optical/NIR coverage comparable in quality and quantity to the X-ray data for
more events, therefore opening new avenues to progress gamma-ray burst
research.Comment: A&A, in press. 11 pages, 5 figure
The short GRB070707 afterglow and its very faint host galaxy
We present the results from an ESO/VLT campaign aimed at studying the
afterglow properties of the short/hard gamma ray burst GRB 070707. Observations
were carried out at ten different epochs from ~0.5 to ~80 days after the event.
The optical flux decayed steeply with a power-law decay index greater than 3,
later levelling off at R~27.3 mag; this is likely the emission level of the
host galaxy, the faintest yet detected for a short GRB. Spectroscopic
observations did not reveal any line features/edges that could unambiguously
pinpoint the GRB redshift, but set a limit z < 3.6. In the range of allowed
redshifts, the host has a low luminosity, comparable to that of long-duration
GRBs. The existence of such faint host galaxies suggests caution when
associating short GRBs with bright, offset galaxies, where the true host might
just be too dim for detection. The steepness of the decay of the optical
afterglow of GRB 070707 challenges external shock models for the optical
afterglow of short/hard GRBs. We argue that this behaviour might results from
prolonged activity of the central engine or require alternative scenarios.Comment: 6 pages, 5 figures, accepted by A&
GRB Fireball Physics: Prompt and Early Emission
We review the fireball shock model of gamma-ray burst prompt and early
afterglow emission in light of rapid follow-up measurements made and enabled by
the multi-wavelength Swift satellite. These observations are leading to a
reappraisal and expansion of the previous standard view of the GRB and its
fireball. New information on the behavior of the burst and afterglow on minutes
to hour timescales has led, among other results, to the discovery and follow-up
of short GRB afterglows, the opening up of the z>6 redshift range, and the
first prompt multi-wavelength observations of a long GRB-supernova. We discuss
the salient observational results and some associated theoretical issues.Comment: 23 pages. Published in the New Journal of Physics Focus Issue, "Focus
on Gamma-Ray Bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer & J.
Greiner). V2: Minor change
The electromagnetic model of Gamma Ray Bursts
I describe electromagnetic model of gamma ray bursts and contrast its main
properties and predictions with hydrodynamic fireball model and its
magnetohydrodynamical extension. The electromagnetic model assumes that
rotational energy of a relativistic, stellar-mass central source
(black-hole--accretion disk system or fast rotating neutron star) is converted
into magnetic energy through unipolar dynamo mechanism, propagated to large
distances in a form of relativistic, subsonic, Poynting flux-dominated wind and
is dissipated directly into emitting particles through current-driven
instabilities. Thus, there is no conversion back and forth between internal and
bulk energies as in the case of fireball model. Collimating effects of magnetic
hoop stresses lead to strongly non-spherical expansion and formation of jets.
Long and short GRBs may develop in a qualitatively similar way, except that in
case of long bursts ejecta expansion has a relatively short, non-relativistic,
strongly dissipative stage inside the star. Electromagnetic and fireball models
(as well as strongly and weakly magnetized fireballs) lead to different early
afterglow dynamics, before deceleration time. Finally, I discuss the models in
view of latest observational data in the Swift era.Comment: solicited contribution to Focus Issue of New Journal of Physics, 27
pages, 4 figure
The Afterglow and Environment of the Short GRB111117A
We present multi-wavelength observations of the afterglow of the short
GRB111117A, and follow-up observations of its host galaxy. From rapid optical
and radio observations we place limits of r \gtrsim 25.5 mag at \deltat \approx
0.55 d and F_nu(5.8 GHz) < 18 \muJy at \deltat \approx 0.50 d, respectively.
However, using a Chandra observation at t~3.0 d we locate the absolute position
of the X-ray afterglow to an accuracy of 0.22" (1 sigma), a factor of about 6
times better than the Swift-XRT position. This allows us to robustly identify
the host galaxy and to locate the burst at a projected offset of 1.25 +/- 0.20"
from the host centroid. Using optical and near-IR observations of the host
galaxy we determine a photometric redshift of z=1.3 (+0.3,-0.2), one of the
highest for any short GRB, and leading to a projected physical offset for the
burst of 10.5 +/- 1.7 kpc, typical of previous short GRBs. At this redshift,
the isotropic gamma-ray energy is E_{gamma,iso} \approx 3\times10^51 erg
(rest-frame 23-2300 keV) with a peak energy of E_{pk} \approx 850-2300 keV
(rest-frame). In conjunction with the isotropic X-ray energy, GRB111117A
appears to follow our recently-reported E_x,iso-E_gamma,iso-E_pk universal
scaling. Using the X-ray data along with the optical and radio non-detections
we find that for a blastwave kinetic energy of E_{K,iso} \approx E_{gamma,iso},
the circumburst density is n_0 \sim 3x10^(-4)-1 cm^-3 (for a range of
epsilon_B=0.001-0.1). Similarly, from the non-detection of a break in the X-ray
light curve at t<3 d, we infer a minimum opening angle for the outflow of
theta_j> 3-10 degrees (depending on the circumburst density). We conclude that
Chandra observations of short GRBs are effective at determining precise
positions and robust host galaxy associations in the absence of optical and
radio detections.Comment: ApJ accepted versio
The complex light-curve of the afterglow of GRB071010A
We present and discuss the results of an extensive observational campaign
devoted to GRB071010A, a long-duration gamma-ray burst detected by the Swift
satellite. This event was followed for almost a month in the
optical/near-infrared (NIR) with various telescopes starting from about 2min
after the high-energy event. Swift-XRT observations started only later at about
0.4d. The light-curve evolution allows us to single out an initial rising phase
with a maximum at about 7min, possibly the afterglow onset in the context of
the standard fireball model, which is then followed by a smooth decay
interrupted by a sharp rebrightening at about 0.6d. The rebrightening was
visible in both the optical/NIR and X-rays and can be interpreted as an episode
of discrete energy injection, although various alternatives are possible. A
steepening of the afterglow light curve is recorded at about 1d. The entire
evolution of the optical/NIR afterglow is consistent with being achromatic.
This could be one of the few identified GRB afterglows with an achromatic break
in the X-ray through the optical/NIR bands. Polarimetry was also obtained at
about 1d, just after the rebrightening and almost coincident with the
steepening. This provided a fairly tight upper limit of 0.9% for the
polarized-flux fraction.Comment: 11 pages, 3 figures, MNRAS, in pres
The complex light-curve of the afterglow of GRB071010A
We present and discuss the results of an extensive observational campaign
devoted to GRB071010A, a long-duration gamma-ray burst detected by the Swift
satellite. This event was followed for almost a month in the
optical/near-infrared (NIR) with various telescopes starting from about 2min
after the high-energy event. Swift-XRT observations started only later at about
0.4d. The light-curve evolution allows us to single out an initial rising phase
with a maximum at about 7min, possibly the afterglow onset in the context of
the standard fireball model, which is then followed by a smooth decay
interrupted by a sharp rebrightening at about 0.6d. The rebrightening was
visible in both the optical/NIR and X-rays and can be interpreted as an episode
of discrete energy injection, although various alternatives are possible. A
steepening of the afterglow light curve is recorded at about 1d. The entire
evolution of the optical/NIR afterglow is consistent with being achromatic.
This could be one of the few identified GRB afterglows with an achromatic break
in the X-ray through the optical/NIR bands. Polarimetry was also obtained at
about 1d, just after the rebrightening and almost coincident with the
steepening. This provided a fairly tight upper limit of 0.9% for the
polarized-flux fraction.Comment: 11 pages, 3 figures, MNRAS, in pres
W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV
A study of W-pair production in e+e- annihilations at Lep2 is presented,
based on 877 W+W- candidates corresponding to an integrated luminosity of 57
pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the
W-pair production and decay, as well as their branching fractions, are
described by the Standard Model, the W-pair production cross-section is
measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton
universality and combining with our results from lower centre-of-mass energies,
the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +-
0.5 (syst.)%. The number of W-pair candidates and the angular distributions for
each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge
boson couplings. After combining these values with our results from lower
centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37,
D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include
both statistical and systematic uncertainties and each coupling is determined
setting the other two couplings to the Standard Model value. The fraction of W
bosons produced with a longitudinal polarisation is measured to be
0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with
the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to
European Physical Journal
- …
