1,032 research outputs found
Airborne thermography of temperature patterns in sugar beet piles
An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas
Beam Performance and Luminosity Limitations in the High-Energy Storage Ring (HESR)
The High-Energy Storage Ring (HESR) of the future International Facility for
Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an
antiproton synchrotron and storage ring in the momentum range from 1.5 to 15
GeV/c. An important feature of this new facility is the combination of phase
space cooled beams with dense internal targets (e.g. pellet targets), resulting
in demanding beam parameter of two operation modes: high luminosity mode with
peak luminosities up to 2*10^32 cm-2 s-1, and high resolution mode with a
momentum spread down to 10^-5, respectively. To reach these beam parameters
very powerful phase space cooling is needed, utilizing high-energy electron
cooling and high-bandwidth stochastic cooling. The effect of beam-target
scattering and intra-beam interaction is investigated in order to study beam
equilibria and beam losses for the two different operation modes.Comment: 8 pages, based on a talk presented at COULOMB'05, Accepted for
publication by Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipmen
Forum: Russia, Europe and the colonial present: the power of everyday geopolitics
This contribution to the debate on Russia, Europe and the colonial present brings together several closely linked events which – alongside the people participating in them – have unleashed enough kinetic energy to kill and maim hundreds of thousands of people in just 12 months. Being inspired and challenged, in equal measure, by Stefan Bouzarovski's intervention on the lasting power of energy colonialism, my aim here is to expose the key features of contemporary Russian imperialism as a concept and the Kremlin's professed lust for territorial expansion and colonial domination as a practice. The empirical vignettes described below are assembled to uncover this exemplar of imperialism and colonialism as a theory-to-practice dyad. They involve (a) a 2021 sketch of pseudoscientific “thermodynamic” theory of imperial geopolitics pencilled by the Kremlin's chief adviser on Ukrainian affairs, (b) a 2016 televised geography lesson from the chairperson of the Russian Geographical Society's board and (c) an original operational plan for achieving control over Ukraine drawn by Moscow in the run-up to its full-scale invasion on 24 February 2022
Evaluating neural networks as a method for identifying students in need of assistance
© 2017 ACM. Course instructors need to be able to identify students in need of assistance as early in the course as possible. Recent work has suggested that machine learning approaches applied to snapshots of small programming exercises may be an effective solution to this problem. However, these results have been obtained using data from a single institution, and prior work using features extracted from student code has been highly sensitive to differences in context. This work provides two contributions: first, a partial reproduction of previously published results, but in a different context, and second, an exploration of the efficacy of neural networks in solving this problem. Our findings confirm the importance of two features (the number of steps required to solve a problem and the correctness of key problems), indicate that machine learning techniques are relatively stable across contexts (both across terms in a single course and across courses), and suggest that neural network based approaches are as effective as the best Bayesian and decision tree methods. Furthermore, neural networks can be tuned to be reliably pessimistic, so they may serve a complementary role in solving the problem of identifying students who need assistance
Light flash phenomenon seen by astronauts
The results from experiments conducted to characterize and elucidate light flashes seen by astronauts on Apollo 11, 12, 13, and 14 during transluna or transearth orbit are presented. The data show cosmic nuclei interacting with the visual apparatus causes the light flash phenomenon. The data also suggest that slow protons and helium ions with a stopping power greater than 10 KeV/micron will cause light flashes and streaks in the partially dark adapted eye. The effects of galactic cosmic nuclei interacting with man during long term missions are discussed
Positron-neutrino correlation in the 0^+ \to 0^+ decay of ^{32}Ar
The positron-neutrino correlation in the decay of
Ar was measured at ISOLDE by analyzing the effect of lepton recoil on
the shape of the narrow proton group following the superallowed decay. Our
result is consistent with the Standard Model prediction. For vanishing Fierz
interference we find , which yields improved
constraints on scalar weak interactions
The KATRIN Pre-Spectrometer at reduced Filter Energy
The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of
the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement
of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An
ultra-low background of about b = 10 mHz is among the requirements to reach
this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E
filter type are used in a tandem configuration. This setup, however, produces a
Penning trap which could lead to increased background. We have performed test
measurements showing that the filter energy of the pre-spectrometer can be
reduced by several keV in order to diminish this trap. These measurements were
analyzed with the help of a complex computer simulation, modeling multiple
electron reflections both from the detector and the photoelectric electron
source used in our test setup.Comment: 22 pages, 12 figure
- …