847 research outputs found

    DCO+^+, DCN and N2_2D+^+ reveal three different deuteration regimes in the disk around the Herbig Ae star HD163296

    Get PDF
    The formation pathways of deuterated species trace different regions of protoplanetary disks and may shed light into their physical structure. We aim to constrain the radial extent of main deuterated species; we are particularly interested in spatially characterizing the high and low temperature pathways for enhancing deuteration of these species. We observed the disk surrounding the Herbig Ae star HD 163296 using ALMA in Band 6 and obtained resolved spectral imaging data of DCO+^+ (JJ=3-2), DCN (JJ=3-2) and N2_2D+^+ (JJ=3-2). We model the radial emission profiles of DCO+^+, DCN and N2_2D+^+, assuming their emission is optically thin, using a parametric model of their abundances and radial excitation temperature estimates. DCO+^+ can be described by a three-region model, with constant-abundance rings centered at 70 AU, 150 AU and 260 AU. The DCN radial profile peaks at about ~60 AU and N2_2D+^+ is seen in a ring at ~160 AU. Simple models of both molecules using constant abundances reproduce the data. Assuming reasonable average excitation temperatures for the whole disk, their disk-averaged column densities (and deuterium fractionation ratios) are 1.6-2.6×1012\times 10^{12} cm2^{-2} (0.04-0.07), 2.9-5.2×1012\times 10^{12} cm2^{-2} (\sim0.02) and 1.6-2.5 ×1011\times 10^{11} cm2^{-2} (0.34-0.45) for DCO+^+, DCN and N2_2D+^+, respectively. Our simple best-fit models show a correlation between the radial location of the first two rings in DCO+^+ and the DCN and N2_2D+^+ abundance distributions that can be interpreted as the high and low temperature deuteration pathways regimes. The origin of the third DCO+^+ ring at 260 AU is unknown but may be due to a local decrease of ultraviolet opacity allowing the photodesorption of CO or due to thermal desorption of CO as a consequence of radial drift and settlement of dust grains

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    Fly-The-Bee: A Game Imitating Concept Learning in Bees

    Get PDF
    AbstractThis article presents a web-based game functionally imitating a part of the cognitive behavior of a living organism. This game is a prototype implementation of an artificial online cognitive architecture based on the usage of distributed data representations and Vector Symbolic Architectures. The game demonstrates the feasibility of creating a lightweight cognitive architecture, which is capable of performing rather complex cognitive tasks. The cognitive functionality is implemented in about 100 lines of code and requires few tens of kilobytes of memory for its operation, which make the concept suitable for implementing in low-end devices such as minirobots and wireless sensors

    Calculated properties of nitrogen-vacancy complexes in beryllium- and magnesium-doped GaN

    Get PDF
    The properties of defect complexes consisting of a nitrogen vacancy with a substitutional beryllium or magnesium atom on neighboring lattice sites in hexagonal GaN are calculated using the AIMPRO local-density-functional theory method. Both types of defects VN−BeGa and VN−MgGa are bound with respect to their isolated constituents. They do not appear to have any electronic levels in the bandgap, and are expected to be neutral defects. Important structural differences are found. In its minimum energy configuration, the Be atom in the VN−BeGa complex lies nearly in the same plane as the three equivalent N atoms nearest to it. Thus, it has shorter Be−N bonds than the Ga−N distance in the bulk crystal, while the Mg atom in the VN−MgGa complex occupies a position closer the lattice site of the Ga atom it replaces. Hence, the VN−BeGa complex has a larger open volume than the VN−MgGa complex. This is consistent with positron annihilation experiments [Saarinen et al., J. Cryst. Growth 246, 281 (2002); Hautakangas et al., Phys. Rev. Lett. 90, 137402 (2003)]. The frequency of the highest local vibrational mode of the VN−BeGa center is calculated to be within 3–4 % of an infrared absorption line detected in Be-doped GaN [Clerjaud (private communication)].Peer reviewe

    Passivation of copper in silicon by hydrogen

    Get PDF
    The structures and energies of model defects consisting of copper and hydrogen in silicon are calculated using the AIMPRO local-spin-density functional method. For isolated copper atoms, the lowest energy location is at the interstitial site with Td symmetry. Substitutional copper atoms are found to adopt a configuration with D2d symmetry. We conclude that the symmetry is lowered from Td due to the Jahn-Teller effect. Interstitial hydrogen atoms are found to bind strongly to substitutional copper atoms with an energy that is more than the difference in formation energy over the interstitial site for Cu. The resulting complex has C2v symmetry in the −2 charge state where the H atom is situated about 1.54 Å away from the Cu atom in a [100] direction. In other charge states the symmetry of the defect is lowered to Cs or C1. A second hydrogen atom can bind to this complex with nearly the same energy as the first. Two structures are found for copper dihydride complexes that have nearly equal energies; one with C2 symmetry, and the other with Cs symmetry. The binding energy for a third hydrogen atom is slightly more than for the first. Calculated electronic levels for the model defects relative to one another are found to be in fair to good agreement with experimental data, except for the copper-dihydride complex. The copper trihydride complex has no deep levels in the bandgap, according to our calculations.Peer reviewe

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    Calculated properties of point defects in Be-doped GaN

    Get PDF
    The properties of several point defects in hexagonal gallium nitride that can compensate beryllium shallow acceptors (BeGa) are calculated using the AIMPRO method based on local density functional theory. BeGa itself is predicted to have local vibrational modes (LVM’s) very similar to magnesium acceptors. The highest frequency is about 663cm−1. Consistent with other recent studies, we find that interstitial beryllium double donors and single-donor beryllium split interstitial pairs at gallium sites are very likely causes of compensation. The calculations predict that the split interstitial pairs possess three main LVM’s at about 1041, 789, and 738cm−1. Of these, the highest is very close to the experimental observation in Be-doped GaN. Although an oxygen donor at the nearest-neighboring site to a beryllium acceptor (BeGa−ON) is also a prime suspect among defects that are possibly responsible for compensation, its highest frequency is calculated to be about 699cm−1 and hence is not related in any way to the observed center. Another mode for this defect is estimated to be about 523cm−1 and is localized on the ON atom. These two vibrations of BeGa−ON are thus equivalent to those for the isolated substitutional centers perturbed by the presence of their impurity partners.Peer reviewe

    CN in prestellar cores

    Full text link
    Determining the structure of and the velocity field in prestellar cores is essential to understanding protostellar evolution.} {We have observed the dense prestellar cores L 1544 and L 183 in the N=10N = 1 \to 0 rotational transition of CN and \thcn in order to test whether CN is depleted in the high--density nuclei of these cores.} {We have used the IRAM 30 m telescope to observe along the major and minor axes of these cores. We compare these observations with the 1 mm dust emission, which serves as a proxy for the hydrogen column density.}{We find that while CN\jone is optically thick, the distribution of \thcn\jone intensity follows the dust emission well, implying that the CN abundance does not vary greatly with density. We derive an abundance ratio of \rm [CN]/[\hh]=\dix{-9} in L 183 and 1-3\tdix{-9} in L 1544, which, in the case of L 183, is similar to previous estimates obtained by sampling lower--density regions of the core.}{We conclude that CN is not depleted towards the high--density peaks of these cores and thus behaves like the N-containing molecules \nnhp and \nhhh. CN is, to our knowledge, the first C--containing molecule to exhibit this characteristic.Comment: Accepted for publication in A&A Letter

    G11.92-0.61-MM2 : a bonafide massive prestellar core?

    Get PDF
    Supported by NSF AAPF (C.J.C., AST-1003134) and ERC (A.V., PALs 320620).Core accretion models of massive star formation require the existence of stable massive starless cores, but robust observational examples of such objects have proven elusive. We report subarcsecond-resolution Submillimeter Array (SMA) 1.3 mm, 1.1 mm, and 0.88 mm and Very Large Array 1.3 cm observations of an excellent massive starless core candidate, G11.92–0.61-MM2, initially identified in the course of studies of GLIMPSE Extended Green Objects (EGOs). Separated by ~7 farcs 2 from the nearby MM1 protostellar hot core, MM2 is a strong, compact dust continuum source (submillimeter spectral index α = 2.6 ± 0.1), but is devoid of star formation indicators. In contrast to MM1, MM2 has no masers, no centimeter continuum, and no (sub)millimeter wavelength line emission in ~24 GHz of bandwidth observed with the SMA, including N2H+(3-2), HCO+(3-2), and HCN(3-2). Additionally, there is no evidence for an outflow driven by MM2. The (sub)millimeter spectral energy distribution of MM2 is best fit with a dust temperature of ~17-19 K and luminosity of ~5-7 L☉. The combined physical properties of MM2, as inferred from its dust continuum emission, are extreme: M ≳ 30 M☉ within a radius 1025 cm–2 and nH_2 >109 cm–3. Comparison of the molecular abundance limits derived from our SMA observations with gas-grain chemical models indicates that extremely dense (n(H) ≫ 108 cm–3), cold (<20 K) conditions are required to explain the lack of observed (sub)millimeter line emission, consistent with the dust continuum results. Our data suggest that G11.92–0.61-MM2 is the best candidate for a bonafide massive prestellar core found to date, and a promising target for future higher-sensitivity observations.Publisher PDFPeer reviewe
    corecore