-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Procedia Computer Science

CrossMark Volume 71, 2015, Pages 25-30

2015 Annual International Conference on Biologically Inspired ompute
Cognitive Architectures

Fly-The-Bee: A game imitating concept learning in bees

D. Kleyko * E. Osipov, M. Bjork, H. Toresson, and A. Oberg

Lulea University of Technology, 971 87 Lulea, Sweden
denkle@ltu.se; eao@ltu.se; magbjr@ltu.se; hentho@ltu.se; antobe@ltu.se;

Abstract

This article presents a web-based game functionally imitating a part of the cognitive behavior
of a living organism. This game is a prototype implementation of an artificial online cognitive
architecture based on the usage of distributed data representations and Vector Symbolic Archi-
tectures. The game demonstrates the feasibility of creating a lightweight cognitive architecture,
which is capable of performing rather complex cognitive tasks. The cognitive functionality is
implemented in about 100 lines of code and requires few tens of kilobytes of memory for its oper-
ation, which make the concept suitable for implementing in low-end devices such as minirobots
and wireless sensors.

Keywords: Vector Symbolic Architecture, distributed data representation, concept learning, cognition

1 Introduction

This article presents a prototype of an artificial online learning system, which imitates the con-
cept learning in a living organism. The approach is inspired by the experiments with honey
bees, which demonstrate their capabilities of learning new concepts [1], [2]. In short the exper-
iment is about training bees to select one or another direction in a mage illustrated in Figure 1
based on the visual input (a certain pattern of two geometrical figures with specific attributes
arranged in a certain order on a plane) indicating the direction towards a reward (sucrose),
the other direction resulted in a penalty (quinine). The experiments were designed to use rein-
forcement learning in the training phase. The challenges associated with designing an artificial
system, which would imitate bees’ concept learning include: a.) An ability of the system to be
trained on small numbers of training trials (the bees mastered concepts after 30 trials only); b.)
An ability for continuous learning; and c¢.) Flexibility in interpretation of the previously unseen
visual targets [1]. The presented prototype is based on the design of a generic artificial learning
pipeline described in [3], which is anchored to psychological models of similarity [4] and features
a concept encoding and reasoning using distributed data representation and Vector Symbolic
Architectures (VSA) [5].

The prototype is built in the form of an online web-based game. The scenario of the game
essentially replicates the real-life experiments with honey bees. The objective of the game is

*Corresponding author

Selection and peer-review under responsibility of the Scientific Programme Committee of BICA 2015 25
© The Authors. Published by Elsevier B.V.

doi:10.1016/j.procs.2015.12.183

https://core.ac.uk/display/82753332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.12.183&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.12.183&domain=pdf

Fly-The-Bee: A game imitating concept learning in bees Kleyko, et al.

to attract a bee-avatar launched from the server to one of two players by demonstrating it
visual patterns and treating it with a reward. The Fly-the-Bee game is accessible for trial
by the following address http://FlyTheBee.ddns.net. The front-end for the moderator is
accessible via http://FlyTheBee.ddns.net/admin. Importantly, the entire learning algorithm
requires only few tens of kilobytes of memory for operation, which makes the concept suitable for
implementation in devices with limited computational resource, for example miniature robots
or embedded devices.

The article proceeds as follows. Section 2 presents an overview of the related work. The
relevant aspects of VSA are introduced in section 3. Section 4 describes games scenario and
the outline of the VSA concept learning pipeline behind its implementation. Section 5 presents
details of implementation and simulations. The paper is concluded in Section 6.

2 Related Work

This article does not concern with benchmarking of the presented in this article prototype of an
artificial learning system with other self-learning, Al-enabled games or cognitive architectures in
general. The major objective is to present a proof-of-concept implementation of a VSA-enabled
online reasoning platform and demonstrate its functional match to a part of the cognitive
behavior of a living organism. As such, the overview of the related work resorts to the discussion
of concepts specific to the concepts behind the presented implementation.

The first results providing the evidence that honey bees can learn relations related visual
stimuli were documented in [2]. This work showed that honey bees are able to learn the
sameness-difference concepts for visual stimuli via delayed sample (non) matching to initial
sample. Later in [6] it was shown that bees are capable of learning the above-below relation
in visual stimuli and able to apply learned relation in transfer tests. [1] presents the results
of experiments showing that honey bees can master two concepts simultaneously, namely the
above-below or left-right and sameness-difference. An overview of results related to conceptual
learning by miniature brains is presented in [2]. A potential usage of the findings for com-
puter vision is discussed in [7]. A discussion of implications of the results in the context of
neuromorphic systems is presented in [8].

Distributed data representation is widely used in computer based semantic reasoning [5],
[9]. Examples of capabilities of distributed representations for solving cognitive tasks include
solving Raven’s progressive matrices [10], [L11]. They could also be applied for representation of
heterogeneous sensory stimulus [12]. In this article distributed representations and in particular
Vector Symbolic Architectures [13] are applied for online concept learning and reasoning.

3 Relevant aspects of Vector Symbolic Architectures

Vector Symbolic Architecture is an approach for encoding and operations on distributed rep-
resentation of information, and previously has mainly been used in the area of cognitive com-
puting for representing structured knowledge and reasoning upon it [5, 13]. Using distributed
representations all entities such as concept labels, objects, attributes are represented by random
codewords of very high dimension, i.e. several thousand bits. Further in this article such vectors
are also referred to as HD-codes. Putting an object into a correspondence with a certain con-
cept is done via bit-wise XOR, operation on HD-codes representing the concept’s label (referred
to as role in the VSA terminology) and the object (called filler in the VSA terminology). For
example a statement “Object X is a star” is represented as STAR g p ® X gp. The formation of

26

Fly-The-Bee: A game imitating concept learning in bees Kleyko, et al.

Lol I |- T s st

|
i
|
i
1 Available .
[—" Y Selects / /‘355’gﬂedrols/51 Selects /
] accepts role
/
/
I -
! training All properties are
HE / un (30trials) randomized, some
/ restricted to
P o / non-Sugar values
/ ..
5]

Feeds the bee with ¢ -
pattern colour

group group

Selects spatial orientation
and one or several other
fixed properties
Non-fixed

properties

are randomized

-
The properties O™ Suga

Ima

'8¢ Properties—_| Selects an
- --~|image, sends [~~~
beetoit

——-Bee~ "7 ~-—__,| Feeds the bee with

sugar f selected)

acid (if selected) |~ ~"Negative feedback.
k-~ -,

__ positive feedoad ™"

Figure 1: The maze and patterns used Figure 2: A graphical representation of the game’s pro-
in experiments with honey bees. tocol.

a predicate consisting of several statements, for example “Object star is above object circle’, is
implemented by a thresholded sum of the HD-codes representing the elements of the predicate.
Namely, the predicate describing a relation in the “star-above-circle” example would be repre-
sented as RE L pove—below = [LABELabovefbelow +STARyp ® Xyp + CIRCLELp ® YHD}
The notation [A + B + C] is used to indicate a bit-wise thresholded sum (also called a magjor-
ity sum) of n vectors results in 0 when n/2 or more arguments are 0, and 1 otherwise. Each
predicate in the form above is a symbolic vector. There is a defined scalar metric of similarity
between two binary vectors, namely Hamming distance. A smaller Hamming distance between
two vectors indicates larger content/structural similarity between them.

The high information capacity of the distributed data representation (i.e. a capability of
joining many predicates into a single representation) and the existence of the well-defined sim-
ilarity metric make VSA suitable for implementation of associative memory with self-learning
capabilities. The VSA-based associative memory is filled using the learning by example. That
is during the system operation predicates of conditions leading to the particular reward are
VSA encoded and added a single HD code which characterizes the system’s experience. This
operation is called mapping. Due to the statistical properties of the distributed representations,
the dominating concepts associated with the specific system’s outcome become dominating in
this joint representation. Next time a system experiences stimuli (e.g. a visual scene), which
representation is similar (to a certain threshold value) to the one in the associative memory, it
may make a prediction about the outcome. The next section presents an example of a concept
formation and the mapping operation.

4 Scenario of the game and the learning pipeline

The scenario of the game is graphically illustrated in Figure 2. In the game there are two human
players, aka “Sugar” and “Acid”, one robot-server and a web front-end for the moderator. In
short the game is about attracting a virtual bee launched by the robot server to the player,
who gives a positive reward, i.e. sugar. The bee is attracted by demonstrating visual patterns,
which are not known to the robot server when the game starts. The patterns shown by the two
players are different between each other (this is assured by blacklisting some relations chosen
by the “Sugar” player at the “Acid” side). The patterns for the particular player bear common
features, which the system must learn. Other features are randomized, meaning that the visual
scenes presented to the virtual bee are never identical.

The game goes on in rounds and on each round the bee is presented with a new scene by
the players. The virtual bee flies to one or the other player. The player treats the Bee with the
corresponding nutrient (either sugar or acid). Initially, the virtual bee chooses its destination

27

Fly-The-Bee: A game imitating concept learning in bees Kleyko, et al.

at random. However, as the game continues the bee collects an experience by mapping the
visual pattern to the type of the treatment. After only a few trials the bee begins to prefer
the “Sugar” player. The bee is continuously learning during the game. The learned experience
is transferable, meaning that when a moderator changes roles (i.e. the “Acid” player starts
to generate patterns of “Sugar”), the robot bee will choose patterns from the “Acid” player
automatically.

The algorithm of the virtual bee implements a simple, yet extensible online learning pipeline.
Due to the space limitations only an overview of its major functions is given here, for more
details an interested reader is referred to [3]. The pipeline begins with a wvision circuitry, which
does the features’ extraction from of the visual input. The scenes in the Fly-the-Bee game are
similar to the images in the real-world experiment, i.e. each scene contains geometrical figures
with single-color fill as exemplified in Figure 1.While in general the wision circuitry block could
be implemented using the standard image processing toolboxes, in the game the set of features
is deterministic, therefore no actual image processing happens at player’s devices.

The next and the major part of the pipeline is the scene encoding block, which encodes the
relations between the objects and their features in the observed scene. In the game each scene
was encoded as a combination of two types of relations: explicit and implicit. The explicit
relation signifies the objects engaged in this relation, for example “Object A is above object
B”. The implicit relation indicates only the fact that the relation exists, without signifying
how the objects are engaged in this relation. When, for example, the vision circuitry detects
that object A is larger than object B the scene encoding block creates an implicit relation “is
larger” without specifying which of the objects object is larger. This taxonomy of relations
is inspired by the psychological model of similarity [4] and captures different aspects of the
similarity assessment: contrast assessment, which cross-compares the sets of scenes’ features
and structural mapping, which analyses the relational commonalities and differences between
the scenes’ objects. In the Fly-the-Bee game the virtual bee is capable of learning the following
set of left-right, above-below, larger-smaller, same-different. This is achieved by the following
VSA-encoding of the scene (note, that the form of encoding above is the particular instance of
the generic encoding template presented in [3]):

SCENE; = [spatial+orient; $Objy +orient,;®Objy +1s®SizeRel; + sd®SameRel,].

The first part of the representation spatial + orient; & Objy + orienty @ Objy- describes
the spatial relation of the two object where spatial will be assigned an HD-code for either
above-below or left-right relation as they appear in the game; orient; are HD-roles for the
specific placement, e.g. “is above”; finally, Obj, is an HD-code (filler) for the objects in the
corresponding placement. The parts Is® SizeRel; and sd® SameRel; encode implicit relations
(“is larger-smaller” and “is same-different”).

When scenes are VSA-encoded as shown above they are temporarily stored awaiting the
reward signal to arrive in order to complete the process of experience forming. When a reward
arrives the VSA representation of the present experience is updated as EXPERIENCE =
[EXPERIENCE + SCENE; REWARD)|. While the system could obviously store VSA
representations of experiences for both the positive and the negative rewards, in the Fly-the-Bee
game only the positive experience is kept in the associative memory.

The system implements reasoning via the recall of EXPERIENCE stored in the associative
memory. In the recall process the VSA-encoded scenes of two players (SCENE; and SCENE,)
are presented to the system. The virtual bee retrieves the HD-code for the reward by unbinding
it from the accumulated VSA-experience as:

REWD;] = EXPERIENCE ¢ SCENE;. REWD; = EXPERIENCE ¢ SCENEo,.

Finally, the virtual bee decides on the direction where to fly selecting the player who showed

28

Fly-The-Bee: A game imitating concept learning in bees Kleyko, et al.

@
3
<1
S

5000==

o
3
<]
s

4000

»
8
8
s
»
8
8
8

istance
istance
istance

3000

@
8
3
s

5 3000 margin between concepts

—above-below
---left-right
---left-right ---leftright -—-left right

10 20 30 40 50 10 20 30 20 50 10 20 30 40 50 10 20 30 40 50
Game round Game roud Game round Game round

2000-

N
S
3
s

Hamming d
Hamming distance
Hamming di
Hamming di

I

S

8

1000~

1000 El
—above-below —above-below —above-below|

1000

0

Figure 3: Test 1. Figure 4: Test 2. Figure 5: Test 3. Figure 6: Test 4.

the scene whose Hamming distance is smaller to the HD-code representing the positive reward.

5 Details of implementation, run-time performance

The Fly-the-Bee game is implemented using Node.js platform, HTML5, JavaScript. The visual
scene for each player is characterized by seven attributes: the spatial placement of objects, the
shapes, the colors and the sizes. The placement attribute has two alternatives, i.e. left-right
or above-below placement; each of the shapes, colors and sizes attributes had five alternative
values - 15 in total. The players have a possibility to choose the number of attributes which
will be fixed in the scenes, the not fixed attributes are randomized for each new game round.
The “Sugar” player configured its rules for the scene generation first. The chosen configuration
is blacklisted for the “Acid” user for the training consistency reasons.

The virtual bee implementation used 31 randomly generated HD-codes (10000 binary ele-
ments each): 15 for representing different values of object’s attributes; 3 for representing roles
in the VSA encoding; 12 for representing the labels above-below, left-right, larger-smaller and
same-different relations; and 1 for representing the reward signal. The moderator’s GUI graph-
ically displays the log of game activities and is capable of forcing the role change for testing the
transferability of the experience.

The JavaScript implementation of the concept learning by the virtual bee is about 100
lines of code. The associative memory was implemented as a list of 10000 element byte-arrays.
In total 44 elements were created for implementing the learning and reasoning. The entire
process of forming the representation of scenes and the recall-based reasoning takes about 50
operations with HD-codes (XOR and majority sum). Note that the byte-array is the smallest
possible array implementation in Javascript. Obviously if operations would be implemented on
bits-granularity the memory footprint could be reduced drastically, i.e. the entire associative
memory of the bit-level virtual bee could fit in 44 kB of memory.

5.1 Learning and reasoning performance

In order to assess the performance of the virtual bee learning curve and the reasoning accuracy
the game was played with four different configurations of the concepts chosen by the “Sugar”
player. In the first test scenario only spatial relation (above-below) was fixed and other attributes
were chosen randomly. In the second test scenario two relations were fixed (above-below and
larger-smaller). In the third scenario the set of fixed relations was extended by the same-
different relation. Finally, in the forth test even shape attributes were fixed. Recall that at the
same time the “Acid” player could generate any pattern of attributed not being fixed by the
“Sugar” player. For each configuration 50 rounds of the game was played. The learning curves
and the recall accuracy for all tests are shown in Figures 3 — 6.

29

Fly-The-Bee: A game imitating concept learning in bees Kleyko, et al.

The obtained results are positive. Initially during several few runs the virtual bee chooses
the direction of fly at random as the system’s experience transfers from a totally blank to the
saturated. The more positive rewards are collected by the bee the more persistent is its choice
of the correct direction. Notably and as expected the similarity threshold of the recall result
to the clean HD-code for the positive reward is larger (i.e. Hamming distance is closer to zero)
for cases where more attributes are fixed in the pattern.

6 Conclusion

This article presented a working prototype of an online artificial concept learning system, which
functionally imitates a part of the cognitive behavior of a living organism - the concept learning
by honey bees. The system adopts Vector Symbolic Architectures using high-dimensional bi-
nary codes for representing a scene, the associative memory and the reasoning. The prototype
features the simplicity of the implementation and small memory footprint, which makes the
adopted pipeline suitable for implementation even on units with severely constrained comput-
ing resources, i.e. miniature robots and embedded devices.

Acknowledgements. This work is supported by the Swedish Foundation for International
Cooperation in Research and Higher Education (STINT), institutional grant 1G2011-2025.

References

[1] Avargues-Weber A., Dyer A. G., Combe M., and Giurfa M. Conceptual learning by miniature
brains. Proceedings of the National Academy of Sciences, 109:7481-7486, 2012.

[2] Avargues-Weber A. and Giurfa M. Simultaneous mastering of two abstract concepts with a minia-
ture brain. Proceedings of the Royal Society B: Biological Sciences, 280:1-9, 2013.

[3] Kleyko D., Osipov E., Gayler R. W., Khan A. L., and Dyer A. G. Imitation of concept learning
by honey bees using vector symbolic architectures. Subm. to Bio. Ins. Cog. Architectures, 2015.

[4] Markman A. and Gentner D. Nonintentional similarity processing. In The New Unconscious.,
pages 107-137. Oxford University Press., 2005.

[5] Kanerva P. Hyperdimensional computing: An introduction to computing in distributed represen-
tation with high-dimensional random vectors. Cognitive Computation, 1(2):139-159, 2000.

[6] Avargues-Weber A., Dyer A. G., and Giurfa M. Conceptualization of above and below relationships
by an insect. Proceedings of the Royal Society B: Biological Sciences, 278:898-905, 2011.

et al. Dyer A. G. Flying in complex environments: Can insects bind multiple sensory perceptions
7] et al. Dyer A. G. Flying i 1 i ts: Can i ts bind multipl ti
and what could be the lessons for machine vision? Jour. of Soft. Eng. and App., 7:406-412, 2014.

[8] et al. Sandin F. Concept learning in neuromorphic vision systems: What can we learn from insects?
Journal of Software Engineering and Applications, 7:387-395, 2014.

[9] Plate T. A. Holographic reduced representations: Distributed representation for cognitive struc-
tures. Center for the Study of Language and Information (CSLI), 2003.
[10] Rasmussen D. and Eliasmith C. A neural model of rule generation in inductive reasoning. Topics
in Cognitive Science, 3(1):140-153, 2011.
[11] et al. Levy S. D. Bracketing the beetle: How wittgenstein’s understanding of language can guide
our practice in agi and cognitive science. In AGI, LNCS Vol. 8598, pages 73-84, 2014.

[12] Kleyko D., Osipov E., Papakonstantinou N., Vyatkin V., and Mousavi A. Fault detection in the
hyperspace: Towards intelligent automation systems. In The proceedings of INDIN, 2015.

[13] Gallant S. I. and Okaywe T. W. Representing objects, relations, and sequences. Neural Compu-
tation, 25(8):2038-2078, 2013.

30

