151 research outputs found

    Critical temperature of non-interacting Bose gases on disordered lattices

    Full text link
    For a non-interacting Bose gas on a lattice we compute the shift of the critical temperature for condensation when random-bond and onsite disorder are present. We evidence that the shift depends on the space dimensionality D and the filling fraction f. For D -> infinity (infinite-range model), using results from the theory of random matrices, we show that the shift of the critical temperature is negative, depends on f, and vanishes only for large f. The connections with analogous results obtained for the spherical model are discussed. For D=3 we find that, for large f, the critical temperature Tc is enhanced by disorder and that the relative shift does not sensibly depend on f; at variance, for small f, Tc decreases in agreement with the results obtained for a Bose gas in the continuum. We also provide numerical estimates for the shift of the critical temperature due to disorder induced on a non-interacting Bose gas by a bichromatic incommensurate potential.Comment: 18 pages, 8 figures; Fig. 8 improved adding results for another value of q (q=830/1076

    Imaging of the Inner Zone of Blast Furnaces Using MuonRadiography: The BLEMAB Project

    Get PDF
    The aim of the BLEMAB project (BLast furnace stack density Estimation through online Muons ABsorption measurements) is the application of muon radiography techniques, to image a blast furnace’s inner zone. In particular, the goal of the study is to characterize the geometry and size of the so-called “cohesive zone”, i.e., the spatial region where the slowly downward-moving material begins to soften and melt, which plays such an important role in the performance of the blast furnace itself. Thanks to the high penetration power of natural cosmic-ray muon radiation, muon transmission radiography could be an appropriate non invasive methodology for the imaging of large high-density structures such as a blast furnace, whose linear dimensions can be up to a few tens of meters. A state-of-the-art muon tracking system is currently in development and will be installed at a blast furnace on the ArcelorMittal site in Bremen (Germany), where it will collect data for a period of various months. In this paper, the status of the project and the expectations based on preliminary simulations are presented and briefly discussed

    Observation of Exclusive Gamma Gamma Production in p pbar Collisions at sqrt{s}=1.96 TeV

    Full text link
    We have observed exclusive \gamma\gamma production in proton-antiproton collisions at \sqrt{s}=1.96 TeV, using data from 1.11 \pm 0.07 fb^{-1} integrated luminosity taken by the Run II Collider Detector at Fermilab. We selected events with two electromagnetic showers, each with transverse energy E_T > 2.5 GeV and pseudorapidity |\eta| < 1.0, with no other particles detected in -7.4 < \eta < +7.4. The two showers have similar E_T and azimuthal angle separation \Delta\phi \sim \pi; 34 events have two charged particle tracks, consistent with the QED process p \bar{p} to p + e^+e^- + \bar{p} by two-photon exchange, while 43 events have no charged tracks. The number of these events that are exclusive \pi^0\pi^0 is consistent with zero and is < 15 at 95% C.L. The cross section for p\bar{p} to p+\gamma\gamma+\bar{p} with |\eta(\gamma)| < 1.0 and E_T(\gamma) > 2.5$ GeV is 2.48^{+0.40}_{-0.35}(stat)^{+0.40}_{-0.51}(syst) pb.Comment: 7 pages, 4 figure

    Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}

    Get PDF
    Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon. The events are selected by looking for a lepton, a photon, significant transverse momentum imbalance, large total transverse energy, and three or more jets, with at least one identified as containing a b quark. The ttbar+photon sample requires the photon to have 10 GeV or more of transverse energy, and to be in the central region. Using an event selection optimized for the ttbar+photon candidate sample we measure the production cross section of, and the ratio of cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+\met, channels are constructed to aid in decay product identification and background measurements. We observe 30 ttbar+photon candidate events compared to the standard model expectation of 26.9 +/- 3.4 events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009. Assuming no ttbar+photon production, we observe a probability of 0.0015 of the background events alone producing 30 events or more, corresponding to 3.0 standard deviations.Comment: 9 pages, 3 figure

    Inhibition of tumour growth by marimastat in a human xenograft model of gastric cancer: relationship with levels of circulating CEA

    Get PDF
    Inhibition of matrix metalloproteinases (MMPs) is an attractive approach to adjuvant therapy in the treatment of cancer. Marimastat is the first orally administered, synthetic MMP inhibitor to be evaluated, in this capacity, in the clinic. Measurement of the rate of change of circulating tumour antigens was used for evaluating biological activity and defining optimum dosage in the early clinical trials of marimastat. Although tumour antigen levels have been used in the clinical management of cancer for many years, they have not been validated as markers of disease progression. In order to investigate the relationship between the effects of marimastat on tumour growth and circulating tumour antigen levels, mice bearing the human gastric tumour, MGLVA1, were treated with marimastat. The MMP inhibitor exerted a significant therapeutic effect, reducing tumour growth rate by 48% (P = 0.0005), and increasing median survival from 19 to 30 days (P = 0.0001). In addition, carcinoembryonic antigen (CEA) levels were measured in serum samples from animals sacrificed at regular intervals, and correlated with excised tumour weight. It was shown that the natural log of the CEA concentration was linearly related to the natural log of the tumour weight and that treatment was not a significant factor in this relationship (P = 0.7). In conclusion, circulating CEA levels were not directly affected by marimastat, but did reflect tumour size. These results support the use of cancer antigens as markers of biological activity in early phase trials of non-cytotoxic anticancer agents. © 1999 Cancer Research Campaig

    Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

    Get PDF
    The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors

    Regional food trade and policy in West Africa in relation to structural adjustment

    Get PDF
    Drell-Yan lepton pairs are produced in the process ppˉe+e+Xp\bar{p} \rightarrow e^+e^- + X through an intermediate γ/Z\gamma^*/Z boson. The lepton angular distributions are used to provide information on the electroweak-mixing parameter sin2θWsin^2\theta_W via its observable effective-leptonic sin2θWsin^2\theta_W, or sin2θeffleptsin^2\theta^{lept}_{eff}. A new method to infer sin2θWsin^2\theta_W, or equivalently, the W-boson mass M_W, is developed and tested using a previous CDF Run II measurement of angular distributions from electron pairs in a sample corresponding to 2.1 fb-1 of integrated luminosity from ppˉp\bar{p} collisions at a center-of-momentum energy of 1.96 TeV. The value of sin2θeffleptsin^2\theta^{lept}_{eff} is found to be 0.2328 +- 0.0011. Within a specified context of the standard model, this results in sin2θWsin^2\theta_W = 0.2246 +- 0.0011 which corresponds to a W-boson mass of 80.297 +- 0.055 GeV/c^2, in agreement with previous determinations in electron-position collisions and at the Tevatron collider

    Measurements of the top-quark mass and the tt̅ cross section in the hadronic τ + jets decay channel at √s=1.96TeV

    Get PDF
    We present the first direct measurement of the top-quark mass using tt¯ events decaying in the hadronic τ+jets decay channel. Using data corresponding to an integrated luminosity of 2.2  fb−1 collected by the CDF II detector in pp¯ collisions at s√=1.96  TeV at the Fermilab Tevatron, we measure the tt¯ cross section, σtt¯, and the top-quark mass, Mtop. We extract Mtop from a likelihood based on per-event probabilities calculated with leading-order signal and background matrix elements. We measure σtt¯=8.8±3.3(stat)±2.2(syst)  pb and Mtop=172.7±9.3(stat)±3.7(syst)  GeV/c2.This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fÜr Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).Peer reviewe

    Measurement of the charge asymmetry of electrons from the decays of W bosons produced in pp\overline{pp} collisions at s\sqrt{s} =1.96 TeV

    Get PDF
    At the Fermilab Tevatron proton-antiproton (pp\overline{pp}) collider, high-mass electron-neutrino (eν) pairs are produced predominantly in the process pp\overline{pp}→W(→eν)+X. The asymmetry of the electron and positron yield as a function of their pseudorapidity constrain the slope of the ratio of the u- to d-quark parton distributions versus the fraction of the proton momentum carried by the quarks. This paper reports on the measurement of the electron-charge asymmetry using the full data set recorded by the Collider Detector at Fermilab in 2001–2011 and corresponding to 9.1 fb1^{-1} of integrated luminosity. The measurement significantly improves the precision of the Tevatron constraints on the parton-distribution functions of the proton. Numerical tables of the measurement are provided

    Measurement of the single top quark production cross section and |Vtb | in 1.96 TeV p p ¯ collisions with missing transverse energy and jets and final CDF combination

    Get PDF
    An updated measurement of the single top quark production cross section is presented using the full data set collected by the Collider Detector at Fermilab (CDF), corresponding to 9.5  fb−1 of integrated luminosity from proton-antiproton collisions at 1.96 TeV center-of-mass energy. The events selected contain an imbalance in the total transverse momentum, jets identified as containing b quarks, and no identified leptons. The sum of the s- and t-channel single top quark cross sections is measured to be 3.53+1.25−1.16  pb and a lower limit on the magnitude of the top-to-bottom quark coupling, |Vtb| of 0.63, is obtained at the 95% credibility level. These measurements are combined with previously reported CDF results obtained from events with an imbalance in total transverse momentum, jets identified as originating from b quarks, and one identified lepton. The combined cross section is measured to be 3.02+0.49−0.48  pb and a lower limit on |Vtb| of 0.84 is obtained at the 95% credibility level
    corecore