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We present the first direct measurement of the top-quark mass using ¢f events decaying in the hadronic
T + jets decay channel. Using data corresponding to an integrated luminosity of 2.2 fb~! collected by the
CDF 1I detector in pp collisions at /s = 1.96 TeV at the Fermilab Tevatron, we measure the t cross
section, g, and the top-quark mass, M,,,. We extract M,,, from a likelihood based on per-event
probabilities calculated with leading-order signal and background matrix elements. We measure o,; =
8.8 = 3.3(stat) = 2.2(syst) pb and My, = 172.7 = 9.3(stat) = 3.7(syst) GeV/c2.

DOI: 10.1103/PhysRevLett.109.192001

The mass of the top quark, M, and the top-quark pair
production cross section, o, have been extensively
studied at both the Fermilab Tevatron and the Large
Hadron Collider at CERN [1-3]. However, final states of
the top-quark decay that include a tau lepton (7) are
relatively unexplored due to the difficulty of identifying
the tau and rejecting quantum chromodynamic (QCD)
processes that can mimic its hadronic decay mode.
The top quark and the tau belong to the heaviest third
generation of standard model (SM) fermions and may
play a special role in electroweak symmetry breaking.
Discrepancies from the SM expectation in these unex-
plored decay channels could point to new top-quark sector
physics.

In this Letter, we present the first direct measurement of
the top-quark mass in the hadronic 7 + jets decay channel
(7 + jets) [4]. We measure o,; and M,,, using data corre-
sponding to 2.2 fb~! of integrated luminosity collected by
the CDF II detector [5] in pp collisions at /s = 1.96 TeV

PACS numbers: 14.65.Ha, 13.35.Dx

at the Fermilab Tevatron. The DO Collaboration previously
measured o,; in the 7+ jets decay channel with data
corresponding to 1 fb~! of integrated luminosity to be
6.9+ 1.5 pb [6], assuming M, = 170 GeV/c?, and
reached a signal purity of 52%.

Assuming three generations in the SM and a unitary
quark-mixing matrix, the top quark decays almost exclu-
sively to a W boson and b quark. We select pair-produced
top-quark events in which one of the W bosons decays into
a pair of light quarks and the other decays to a tau and a
neutrino. This decay channel represents 15.2% of the 7
branching ratio and results in a final state with a tau, a
neutrino, two b quarks, and two light-flavor quarks (u, d, or
s). Although the tau can decay leptonically to an electron
(e) or muon (w) and a pair of neutrinos, these events are
difficult to differentiate from electrons or muons from W
boson decays. As a result, we select events with the tau
decaying to a neutrino and a narrow jet of hadrons, which
are usually charged and neutral pions, that correspond to
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9.8% of all tf decays. We use an artificial neural network
(NN) to reduce the QCD multijet background contribution.
The additional neutrino produced in the tau decay compli-
cates the tau reconstruction. To solve this, we adapt a
missing mass calculator method [7] to the 7 + jets topology
to infer a unique solution for the neutrino four-momentum
with sufficient precision to reasonably reconstruct the tau.
We use a binned likelihood fit based on the predicted and
observed number of events to measure o ;. Then, to extract
M,,, we use a likelihood function built from signal and
background probabilities calculated with the predicted
differential cross sections for ¢ and W + four-parton
production, respectively.

The data used in this measurement are selected using a
multijet online selection (trigger) that requires at least four
calorimeter energy clusters with transverse energy [8] (E7)
greater than 15 GeV each and a total sum E7 of all clusters
greater than 175 GeV [9]. Jets are reconstructed by a cone
algorithm that clusters energies in calorimeter towers

within a fixed cone size of AR = 0.4 [10], where AR =

vAn? + A¢? [8]. In the offline analysis, events are re-
quired to have exactly four jets with E; > 20 GeV, miss-

ing transverse energy (Kp) greater than 20 GeV, and a
single hadronically decaying tau selected as described
below. Jet energies are corrected for nonlinearity of the
detector response and multiple pp interactions within the
bunch crossing [11]. One of the four jets must be identified
as having originated from a b quark (b-tagged) using a
secondary vertex finding algorithm [12]. Hadronically de-
caying taus appear as narrow jets with an odd number of
tracks and low neutral pion multiplicity. We select taus
using a two-cones algorithm [13]. The inner cone defining
the signal region has a size set to the lesser of 10° (0.17 rad)
and (5 GeV)/E rad, where E_ is the energy of the calo-
rimeter energy cluster associated with the tau candidate.
The second cone with a size of 30° defines an isolation
region outside of the signal cone. A tau must have one or
three tracks in the signal region and no tracks in the
isolation region. We require the E7 of the tau energy cluster
to exceed 20 GeV and the E; of the visible tau to exceed
25 GeV, where visible refers to the combination of the
track and neutral pion information. We require that the
calorimeter energy in the isolation region be less than 10%
of the visible tau energy. Finally, we veto events with an
identified electron or muon.

The dominant background for this analysis is high jet
multiplicity QCD events with a jet misidentified as a tau.
To reduce this background, we develop a NN to distinguish
between 17 — 7 + jets and QCD multijet events. The NN
is trained using QCD multijet events, obtained from data
by selecting events with a tau candidate with at least one
track in the isolation region and passing all other selection
requirements, and 7 events generated using the PYTHIA
Monte Carlo generator [14] coupled with a GEANT [15]
based CDF II detector simulation [16]. To properly account

for tau polarization effects, the tau decays are modeled by
the TAUOLA package [17]. The NN uses eight variables that
exploit the topological differences between QCD multijet
and ¢7 events including £ and the sum of the Ey of various
combinations of the tau and jets [4]. After training the NN,
we find good separation between QCD multijet and #7
events. Optimal signal significance, defined as the number
of expected signal events divided by the square root of the
total number of observed events, is achieved by removing
events associated to a NN value below 0.85. We initially
select 162 events of which 41 events survive the 0.85 NN
requirement.

Because of the difficulty in simulating QCD multijet
events, b quark tagging algorithms, and the production of
heavy flavor quarks in association with W bosons, we
estimate the background contributions with a data-driven
approach similar to that described in Ref. [12]. We use the
NN output distribution to fit the contributions of the signal
and background processes to the data. This is done both
before and after applying b-tagging requirements. Since
most of the selected data events return a NN value below
0.7, the fit is dominated by events outside of the signal
region. We begin by calculating the contributions of the
signal and each background process before the b-tagging
requirement is applied. The 77 and electroweak background
contributions are determined from simulation. Diboson,
single top-quark, and Z + jets production are modeled
using PYTHIA, MADEVENT [18], and ALPGEN [19], respec-
tively, with PYTHIA used for parton showering and
underlying event generation. Each of these processes’
contributions is set to its expectation based on its respective
theoretical cross section [20,21], the total integrated lumi-
nosity of the data, and the acceptance determined from
simulation. The #7 contribution is modeled with PYTHIA and
is similarly normalized using the next-to-next-to-leading
order SM ¢ cross section prediction [22]. For all simulated
events, a GEANT based simulation is used to model the
CDF II detector response. With these contributions known,
we determine the contributions from QCD multijet and
W + jets events by fitting the shape of the NN output
distribution for each component (with the previously cal-
culated contributions fixed) to the data before applying the
NN selection and b-tagging requirements. The QCD multi-
jet sample is selected from data as previously described
while the W + jets events are modeled with ALPGEN simi-
larly to Z + jets events. We fit these distributions with a
binned Poisson likelihood as seen in Fig. 1. The contribu-
tion of QCD multijet events in the signal region is calcu-
lated from this fit. All remaining events are assumed to
come from W + jets production.

For each process except QCD multijet events, the con-
tribution after applying the b-tagging requirement is calcu-
lated by applying b-tagging efficiencies measured in
Ref. [12] to the initially calculated contribution. Incorrect
tagging of light quarks and tagging of the b and ¢ quarks
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FIG. 1 (color online). Fit to the NN output shape before
applying the b-tagging requirement. The arrow marks the lower
bound on the signal region.

have inherently different uncertainties. To properly esti-
mate uncertainties associated with the contribution of
W + jets events, this contribution is divided into W +
light flavor (W + If) and W + heavy flavor (Wbb, Wce,
and Wc) parts with separately estimated uncertainties. To
calculate the contribution from QCD multijet events, we
apply the b-tagging requirement to the QCD multijet sam-
ple. We then combine ¢f and the other background pro-
cesses into a single sample with the relative contributions
fixed to their calculated values. The NN output distribu-
tions of these two samples are then fit to the data selected
with the b-tagging requirement, and the contribution of
QCD multijet events in the signal region is derived from
the result. Each process’s contribution, assuming o; =
7.4 pb and M, = 172.5 GeV/c?, is given in Table L
Of the 41 selected events, we expect roughly 18 QCD
multijet events and 18 ¢ events. From simulation studies,
we estimate that 76.5 = 0.5% of the selected 7 events

TABLE I. Predicted number of selected 7 + jets candidate
events from each considered process after all selection require-
ments are applied assuming o;=7.4pb and My, =
172.5 GeV/c?. The uncertainty is a combination of statistical
and systematic uncertainty.

Source Number of events
Diboson 0.19 = 0.01
Single top quark 0.16 = 0.01
Zbb 0.29 * 0.04
Wbb 0.6 +0.5
Wce 0.3 £0.3
We 0.2=*+0.1
W+ 1f 0.5*+0.6
QCD multijet 18.2 = 4.1
Total background 204 4.2
tf 18.2 =28
Total predicted 38.6 £5.0
Observed 41

correspond to a hadronic 7 + jets final state. The other
major contributions to the #7 events are all-hadronic 77
decays (12.3 = 0.4%) and tf — e + jets (5.3 = 0.3%).
We measure o,; using a likelihood function based on a
Poisson probability distribution comparing the number of
observed (N,) and predicted (N,) events for a given o

written as L = e‘NﬁNg” /(N,!). We consider the negative
logarithm of this function over values of o,; from 5 to 15 pb
where N, is recalculated at each point with the fraction of
QCD multijet events kept constant to the value calculated
for o7 = 7.4 pb. The result is fit with a 2nd order poly-
nomial which is minimized to extract the central value and
statistical uncertainty. The cross section value determined
by the fit is o, = 8.8 = 3.3(stat) pb.

The dominant sources of systematic uncertainty include
the acceptance, selection efficiencies, background esti-
mate, and luminosity. For acceptance effects, we consider
uncertainties on the jet energy scale (JES) [11] (0.6 pb),
parton showering models (0.5 pb), parton distribution func-
tions (PDF) (0.5 pb), initial and final state radiation (ISR,
FSR) (0.5 pb), and color reconnection [23] (0.4 pb). We
consider systematic uncertainties on the efficiency mea-
surements from the b-tagging (0.4 pb), tau identification
(0.2 pb), and trigger efficiency (0.1 pb) scale factors. The
background systematics come from the W + heavy flavor
scale factor uncertainty [12] (0.1 pb) and the QCD multijet
contribution, which is the dominant systematic uncertainty.
We measure this uncertainty (1.8 pb) by comparing the NN
output distribution shapes of the QCD multijet events and
data dominated by QCD multijet events which are selected
by removing the f; requirement. Finally, the uncertainty
on the integrated luminosity is 6% [24] (0.5 pb).
Combining all these sources in quadrature results in the
total systematic uncertainty of 2.2 pb, a 25% uncertainty.
We measure o;; assuming M, = 172.5 GeV/c? to be
8.8 + 3.3(stat) * 2.2(syst) pb, which is consistent with
the next-to-next-to-leading order SM prediction of
7.4570. 13 pb [22].

We calculate My, from a likelihood function based on
probabilities corresponding to the signal and background
hypothesis for each event. These probabilities are calcu-
lated from the differential cross section for 77 and W +
four-parton production, respectively. The method uses a
similar approach to the previous measurement in the e and
M + jets decay channels [25]. The signal probability is
based on a #f leading-order matrix element which assumes
qq production [26] and is calculated over 31 input mass
values ranging from 145 to 205 GeV/c?. Since it does not
depend on M, the background probability is calculated
once for each event using a W + four-parton matrix ele-
ment from the VECBOS [27] generator.

The tau decay adds an extra complication by introducing
a second neutrino in the event. We reconstruct this addi-
tional neutrino by adapting a method developed for the
reconstruction of a resonance decaying to 77 [7] to the
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7 + jets topology. We find from simulation studies of tf —
T + jets events that the neutrino from the tau decay is
nearly collinear with the hadronic components of the tau
decay as their # and ¢ angles tend to agree within 0.1
radians. Additionally, we find that the ¢ angle of the
neutrino from the W boson is within 1 rad of the ¢
direction associated with the Fr. Simulation studies show
that these statements hold true in greater than 99% of
events. We introduce a four-dimensional scan over the
angles of both neutrinos restricting them to the above
ranges. Assuming the neutrino mass is negligible and that
the W boson and tau have masses of 80.4 GeV/c? and
1.777 GeV/c?, respectively, we completely solve for the
four vector of each neutrino for each set of angles in the
scan. We then compare the predicted x and y components
of the f; from the neutrino solutions to the measured Fr
components with Gaussian probability functions and
choose the set of angles that returns the greatest proba-
bility. This method accurately reconstructs the four-
momentum of the neutrino from the tau decay, but it
does not perform as well with the four-momentum of the
neutrino from the W boson decay. Therefore, we use the
result of this method only to determine the tau four-
momentum in the event, while the neutrino from the W
boson decay is reconstructed in the method as it would
be for the e or u + jets channel [25] by assuming the #7
system is produced with no pz. Studies with simulated
electron + jets events in which the electron energy is
smeared to match the tau energy resolution show that any
bias introduced by these methods is removed by the final
calibration [4].

Each probability is calculated by integrating over the
differential cross section for the appropriate process:

p=L / do()fG)fGIWE $dgidgy, (1)
g

where do is the differential cross section, f is the parton
distribution function (PDF) for a quark with momentum
fraction of the incident proton §, X refers to observed
quantities, y refers to parton level quantities, and W(X, y)
is the transfer function used to map X to y based on
simulation studies. The event probability is a sum of the
signal and background probabilities weighted by the
signal and background fractions, respectively. To improve
the statistical uncertainty on the M,,, measurement, the
likelihood function includes a Gaussian constraint on the
background fraction set to 0.5 = 0.1 from Table I. We
evaluate the likelihood function for each of the 31 input
top-quark masses and fit the result with a second-order
polynomial to derive M, and its statistical uncertainty.
We calibrate the measurement on 21 simulated 7 samples
covering a mass range of 155 to 195 GeV/c?. The like-
lihood function and fit for the data before applying the
calibration functions can be seen in Fig. 2. We measure
M, to be 172.7 % 9.3(stat) GeV/c?.

-log Likelihood

150 160 170 180 190 200
M, (GeV/c?)
FIG. 2. Negative log of the top-quark mass likelihood as a

function of M, for all data events. The calibration functions
have not yet been applied.

The largest systematic uncertainty comes from the JES
and is calculated to be 3.4 GeV/c2. We also consider
systematic uncertainties from the differences in parton
showering models (0.5 GeV/c?), color reconnection
(0.5 GeV/c?), ISR and FSR (0.3 GeV/c?), PDF’s
(0.1 GeV/c?), and the uncertainty on the fraction of 7
pairs produced from gg fusion (0.2 GeV/c?). The back-
ground fraction uncertainty is measured by shifting each
background source within its uncertainty from Table I
(0.5 GeV/c?). We consider uncertainties from different
b-jet fragmentation models and semileptonic branching
ratios for jets from b quarks as well as shifts in the energy
scale of these jets (0.4 GeV/c?). We also account for shifts
from the tau energy scale (0.2 GeV/c?). The pileup sys-
tematic uncertainty (1.0 GeV/c?) accounts for a known
mismodeling in the luminosity profile of the simulation.
Uncertainty due to local nonlinearity of the method and
any assumptions used is estimated by shifting the calibra-
tion function within its uncertainty (0.2 GeV/c?). We take
the remaining 0.14 GeV/c? uncertainty on the fit of the
mass residual (defined as the true mass subtracted from the
measured mass) across all 21 mass points as an uncertainty
on the limited size of the simulation sample. We find M,
to be 172.7 + 9.3(stat) * 3.7(syst) GeV/c? in agreement
with the most recent Tevatron combination of 173.18 =
0.94 GeV/c? [3].

Using data corresponding to an integrated luminosity
of 2.2 fb~!, we have made the first direct measurement
of the top-quark mass in ¢f events identified as decaying to
a hadronic 7 + jets topology. Assuming a top-quark mass
of 172.5 GeV/c?, we find the 7 pair production cross
section to be 8.8 = 3.3(stat) = 2.2(syst + lumi) pb. This
value is consistent with the next-to-next-to-leading-order
SM prediction [22] and recent measurements [28], includ-
ing the DO measurement in the same decay channel [6].
We measure the top-quark mass to be 172.7 = 9.3(stat) =
3.7(syst) GeV/c? in agreement with the Summer 2011
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Tevatron top-quark mass combination of 173.18 =
0.94 GeV/c? [3]. These measurements demonstrate that
we can do complex analyses with tau leptons even in a high
jet multiplicity environment at hadron colliders. This is
particularly interesting at the LHC where new physics, e.g.,
SUSY, could preferentially lead to final states with tau
leptons.
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