46 research outputs found

    Molecularly imprinted nanoparticles based sensor for cocaine detection

    Get PDF
    The development of a sensor based on molecularly imprinted polymer nanoparticles (nanoMIPs) and electrochemical impedance spectroscopy (EIS) for the detection of trace levels of cocaine is described in this paper. NanoMIPs for cocaine detection, synthesized using a solid phase, were applied as the sensing element. The nanoMIPs were first characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering and found to be ~148.35 ± 24.69 nm in size, using TEM. The nanoMIPs were then covalently attached to gold screen-printed electrodes and a cocaine direct binding assay was developed and optimized, using EIS as the sensing principle. EIS was recorded at a potential of 0.12 V over the frequency range from 0.1 Hz to 50 kHz, with a modulation voltage of 10 mV. The nanoMIPs sensor was able to detect cocaine in a linear range between 100 pg mL−1 and 50 ng mL−1 (R2 = 0.984; p-value = 0.00001) and with a limit of detection of 0.24 ng mL−1 (0.70 nM). The sensor showed no cross-reactivity toward morphine and a negligible response toward levamisole after optimizing the sensor surface blocking and assay conditions. The developed sensor has the potential to offer a highly sensitive, portable and cost-effective method for cocaine detection

    Development of a β-Lactoglobulin sensor based on SPR for milk allergens detection

    Get PDF
    A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL−1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL−1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (KD), were equal to 2.59 × 10−9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing

    Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor

    Get PDF
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10–9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL–1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87–120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer

    Assessment of the prevalence and risk factors of low back pain in operating room health workers: An observational study in Italy

    Get PDF
    Aim: The aim of this study was to assess the prevalence of low back pain (LBP) among healthprofessionals and the possible risk factors. Methods: The study was carried out from April 2018 to October 2018 among all health workers of the Orthopaedic Clinic and the Emergency Department of “Policlinico Umberto I” in Rome. LBP was assessed using the Nordic Questionnaire Musculoskeletal Disorders in the section on lumbar pain. The type of physical activity carried out as prevention was investigated by use of the International Physical Activity Questionnaires. The overall state of health and lifestyle was deter- mined by the Short Form 12-item Health Survey. Job satisfaction and perceived work stress were assessed through the 15-questions of Karasek’s Questionnaire. The intensity of the low back pain was assessed using a Numerical Rating Scale. A univariate analysis was conducted to assess the associations between socio-demographic and working variables. Multiple logistic regression mod- els were used to assess independent correlates of LBP. Results: One hundred thirteen subjects were enrolled, 52 women and 61 men. The annual period- prevalence of lumbar musculoskeletal disorder was found on 79.6% of participants with LBP. Mean value evidence of NRS was 2.66. The highest LBP risk over the 12 months was found in groups with high job demand (OR = 1.18; 95%CI: 1.01 – 1.38), low decision-making opportunities (for decision latitude OR = 0.87; (0-76 – 1.0), and low levels of physical activity (OR = 0.75; 95%CI: 0.64 – 0.89). Conclusion: The working environment is a potential risk factor for the development of LBP and is suitable for prevention programmes. The protective effect of physical activity and work-related stress management indicate room for improvements for the prevention of LBP in these HCWs. Conflicts of interest: None declared

    A comparison of EIS and QCM nanoMIP-based sensors for morphine

    Get PDF
    In this work we have compared two different sensing platforms for the detection of morphine as an example of a low molecular weight target analyte. For this, molecularly imprinted polymer nanoparticles (NanoMIP), synthesized with an affinity towards morphine, were attached to an electrochemical impedance spectroscopy (EIS) and a quartz crystal microbalance (QCM) sensor. Assay design, sensors fabrication, analyte sensitivity and specificity were performed using similar methods. The results showed that the EIS sensor achieved a limit of detection (LOD) of 0.11 ng·mL−1, which is three orders of magnitude lower than the 0.19 µg·mL−1 achieved using the QCM sensor. Both the EIS and the QCM sensors were found to be able to specifically detect morphine in a direct assay format. However, the QCM method required conjugation of gold nanoparticles (AuNPs) to the small analyte (morphine) to amplify the signal and achieve a LOD in the µg·mL−1 range. Conversely, the EIS sensor method was labor-intensive and required extensive data handling and processing, resulting in longer analysis times (~30–40 min). In addition, whereas the QCM enables visualization of the binding events between the target molecule and the sensor in real-time, the EIS method does not allow such a feature and measurements are taken post-binding. The work also highlighted the advantages of using QCM as an automated, rapid and multiplex sensor compared to the much simpler EIS platform used in this work, though, the QCM method will require sample preparation, especially when a sensitive (ng·mL−1) detection of a small analyte is needed

    The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility

    Get PDF
    As noted by Warburg, many cancer cells depend on the consumption of glucose. We performed a genetic screen to identify factors responsible for glucose addiction and recovered the two subunits of the xCT antiporter (system xc−), which plays an antioxidant role by exporting glutamate for cystine. Disruption of the xCT antiporter greatly improves cell viability after glucose withdrawal, because conservation of glutamate enables cells to maintain mitochondrial respiration. In some breast cancer cells, xCT antiporter expression is upregulated through the antioxidant transcription factor Nrf2 and contributes to their requirement for glucose as a carbon source. In cells carrying patient-derived mitochondrial DNA mutations, the xCT antiporter is upregulated and its inhibition improves mitochondrial function and cell viability. Therefore, although upregulation of the xCT antiporter promotes antioxidant defence, it antagonizes glutamine metabolism and restricts nutrient flexibility. In cells with mitochondrial dysfunction, the potential utility of xCT antiporter inhibition should be further tested

    Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer

    Get PDF
    Review of the articleMitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically

    A new phenotype of mitochondrial disease characterized by familial late-onset predominant axial myopathy and encephalopathy

    Get PDF
    Axial myopathy is a rare neuromuscular disease that is characterized by paraspinal muscle atrophy and abnormal posture, most notably camptocormia (also known as bent spine). The genetic cause of familial axial myopathy is unknown. Described here are the clinical features and cause of late-onset predominant axial myopathy and encephalopathy. A 73-year-old woman presented with a 10-year history of severe paraspinal muscle atrophy and cerebellar ataxia. Her 84-year-old sister also developed late-onset paraspinal muscle atrophy and generalized seizures with encephalopathy. Computed tomography showed severe atrophy and fatty degeneration of their paraspinal muscles. Their mother and maternal aunt also developed bent spines. The existence of many ragged-red fibers and cytochrome c oxidase-negative fibers in the biceps brachii muscle of the proband indicated a mitochondrial abnormality. No significant abnormalities were observed in the respiratory chain enzyme activities; however, the activities of complexes I and IV were relatively low compared with the activities of other complexes. Sequence analysis of the mitochondrial DNA from the muscle revealed a novel heteroplasmic mutation (m.602C>T) in the mitochondrial tRNAPhe gene. This familial case of late-onset predominant axial myopathy and encephalopathy may represent a new clinical phenotype of a mitochondrial disease

    Ginkgo biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical Practice

    Get PDF
    Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements. Numerous preclinical studies have shown the neuroprotective effects of EGb761 and support the notion that it may be effective in the treatment and prevention of neurodegenerative disorders such as Alzheimer’s disease (AD). Despite the preclinical promise, the clinical efficacy of this drug remains elusive. In this review, possible mechanisms underlying neuroprotective actions of EGb761 are described in detail, together with a brief discussion of the problem of studying this herb clinically to verify its efficacy in the treatment and prevention of AD. Moreover, various parameters e.g., the dosage and the permeability of the blood brain barrier (BBB), impacting the outcome of the clinical effectiveness of the extract are also discussed. Overall, the findings summarized in this review suggest that, a better understanding of the neuroprotective mechanisms of EGb761 may contribute to better understanding of the effectiveness and complexity of this herb and may also be helpful for design of therapeutic strategies in future clinical practice. Therefore, in future clinical studies, different factors that could interfere with the effect of EGb761 should be considered
    corecore