76 research outputs found

    Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Get PDF
    Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+) by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2). Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1). Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1) in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1) and heme-oxygenase-1 (HO-1) as well as the pro-apoptotic Bcl-2-associated X protein (Bax) were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity

    Epoetin Delta Reduces Oxidative Stress in Primary Human Renal Tubular Cells

    Get PDF
    Erythropoietin (EPO) exerts (renal) tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs) from oxidative stress and if so which pathways are involved. EPO (epoetin delta) could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR) since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1), aquaporin-1 (AQP-1), and B-cell CLL/lymphoma 2 (Bcl-2) have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM), dipeptidyl peptidase IV (DPPIV), and cytoglobin (Cygb) to play a role in this process

    The Authors Reply

    Get PDF

    Increased serum strontium levels in dialysis patients: An epidemiological survey

    Get PDF
    Increased serum strontium levels in dialysis patients: An epidemiological survey.BackgroundWe previously reported on increased bone strontium levels in dialysis patients with osteomalacia versus those presenting other types of renal osteodystrophy. A causal role of strontium in the development of osteomalacia was established in a chronic renal failure rat model.MethodsTo further elucidate the latter issue and to find out whether dialysis patients from particular centers/countries are at an increased risk for strontium accumulation, a worldwide multicenter study was established. In total, 834 patients from 34 dialysis centers in 23 countries were included. In each of the patients, a serum sample was taken for strontium determination, and water and dialysate samples were taken at the various steps of the water purification process. For each patient clinical data and for each center dialysis modalities were recorded.ResultsStrontium levels in serum of dialysis patients showed major differences between the various centers, ranging from mean values of 25 ± 8 μg/liter in the center with the lowest level up to 466 ± 90 μg/liter in the center with the highest concentration. It is of interest that these high levels were mainly found in developing countries. Furthermore, our data point toward a role of the final dialysate in the accumulation of the element, as indicated by the strong correlation (r = 0.74, P < 0.001) between mean serum and dialysate strontium levels. As the high tap water concentration of strontium was adequately reduced during the water purification process, contamination of the final dialysis fluid occurred by the addition of concentrates contaminated with strontium. Besides the dialysate, other factors, such as duration of dialysis, vitamin D supplements, or types of phosphate binders, played a less important role in the accumulation of the element.ConclusionsData of this multicenter study indicate patients of particular dialysis centers to be at an increased risk for strontium accumulation, the clinical consequence of which is under current investigation

    Increased bone strontium levels in hemodialysis patients with osteomalacia

    Get PDF
    Increased bone strontium levels in hemodialysis patients with osteomalacia.BackgroundIn this study, we report on the association between increased bone strontium levels and the presence of osteomalacia in end-stage renal failure patients treated by hemodialysis.MethodsWe performed a histologic examination and determined the strontium content and strontium/calcium ratios in bone biopsies of 100 hemodialysis patients recruited from various centers all over the world. Aside from the bone strontium concentration, the bone aluminum content was assessed. The bone zinc concentration, a nonrelevant element for bone toxicity, was also measured.ResultsBone strontium levels and bone strontium/calcium ratios were increased in subjects with osteomalacia when compared with those with the other types of renal osteodystrophy. Bone strontium and bone calcium levels correlated with each other. The slope of the linear regression curve correlating these parameters was much steeper in the osteomalacic group (Y = 2.22X - 120) as compared with the other types of renal osteodystrophy (Y = 0.52X - 5.7). Within the group of patients with osteomalacia, bone strontium levels also significantly correlated with the bone aluminum content (r = 0.72, P = 0.018). No such correlation was found for the other types of renal osteodystrophy. The bone zinc concentration of subjects with normal renal function did not differ significantly from the values noted for the various types of renal osteodystrophy taken as separate groups, nor could increased bone zinc concentrations be associated with a particular bone lesion.ConclusionsOur data demonstrate an association between osteomalacia and increased bone strontium concentrations in dialysis patients. Further studies are warranted to establish whether strontium plays either a primary, secondary, or contributive role in the development of the latter type of renal osteodystrophy

    Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers

    Get PDF
    Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG &lt;sub&gt;2&lt;/sub&gt; ) &lt;sub&gt;2&lt;/sub&gt; -IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG &lt;sub&gt;2&lt;/sub&gt; ) &lt;sub&gt;2&lt;/sub&gt; -IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG &lt;sub&gt;2&lt;/sub&gt; ) &lt;sub&gt;2&lt;/sub&gt; -IP4 disrupts the nucleation and growth of pathological calcification

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Bone biomarkers in de novo renal transplant recipients

    No full text
    Successful kidney transplantation (partly) corrects the physiologic and metabolic abnormalities driving chronic kidney disease - mineral and bone disorders. At the same time, renal transplant recipients are exposed to immunosuppressive agents that may affect bone metabolism. Bone biomarkers have been suggested as surrogates of or adjuncts to bone biopsy and imaging techniques to assess bone health and to classify risk of bone loss and fractures. Bone biomarkers may be classified as circulating factors that affect bone metabolism (commonly referred to as bone metabolism markers) or that reflect bone cell number and/or activity (commonly referred to as bone turnover markers). A growing body of evidence shows that successful renal transplantation has a major impact on both bone metabolism and bone turnover. Analytical issues, including the cross-reactivity with fragments, complicate the interpretation of bone biomarkers, especially in the setting of a rapid changing kidney function, as is the case after successful renal transplantation. Overall, bone turnover seems to decline following renal transplantation, but inter-individual variability is substantial. Preliminary evidence indicates that bone biomarkers may be useful in guiding mineral and bone therapy in renal transplant recipients.status: publishe

    Biomarkers Predicting Bone Turnover in the Setting of CKD.

    Full text link
    PURPOSE OF THE REVIEW: Impaired bone quality contributes to the increased fracture risk in chronic kidney disease patients. Both low and high turnover bone disease may compromise bone quality. The question arises whether bone biomarkers may be additive or replace bone histormorphometry for diagnosing the extremes of bone turnover. RECENT FINDINGS: Studies exploring the performance of established and emerging bone biomarkers against histomorphometric assessment of bone turnover are limited and overall yield inconclusive results as to their diagnostic utility. Bone biomarkers, although promising, currently fail to meet the needed diagnostic accuracy to replace bone histomorphometry and thus are not yet ready for clinical use. Bone biomarkers have not only several advantages, but also important limitations such as high biological variability, retention with kidney disease, preanalytical issues, and interassay variability. These important issues must be considered when developing and evaluating bone biomarkers. There is an urgent need for harmonization and standardization of available assays and additional bone biopsy studies
    corecore