278 research outputs found

    Essential Oils of Dennettia Tripetala Bak. f. Stem Bark and Leaf – Constituents and Biological Activities:

    Get PDF
    The essential oil from the stem bark and leaves of Dennettia tripetala Bak. f. (Annonaceae) growing wild in Ondo State, Nigeria, has been characterized by combined gas chromatography (GC) and gas chromatography-mass spectrometry (GC- MS) analyses. Overall, thirty-six components have been fully identified, thirty-two in the stem-bark oil, and only seven in the leaf oil. In both oils, 2-phenylnitroethane was the main component, ranging between 70 – 76% of the total oils. The profile of the stem bark oil was characterized by a large number of sesquiterpenes, whereas among the few components in the leaf oil, linalool reaches over 17%. When both oils were assayed for antimicrobial activity, only Staphylococcus aureus was susceptible to the stem-bark oil which was more active than leaf oil. For protective effects against UV radiation–induced peroxidation in phosphatidylcholine (PC) liposomes, stem-bark oil also showed greater effectiveness. Activity of the leaf oil against Trichomonas gallinae, was also remarkable

    Multiproxy records of climate variability for Kamchatka for the past 400 years

    Get PDF
    Du Bois du Bais Louis-Thibault. Décret du comité des Secours publics versant une indemnité au citoyen Dunoyer pour sa détention, lors de la séance du 10 brumaire an III (31 octobre 1794). In: Archives Parlementaires de 1787 à 1860 - Première série (1787-1799) Tome C - Du 3 au 18 brumaire an III (24 octobre au 8 novembre 1794) Paris : CNRS éditions, 2000. p. 248

    Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review.

    Get PDF
    To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3-5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013-April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2-5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169)

    Decadal variation of the North Atlantic meridional heat transport and its relation to atmospheric processes

    Get PDF
    The effects of the meridional heat transport in the North Atlantic Ocean (HTR) on the north hemispheric climate are studied using the results of the coupled model ECHAM5/MPI-OM. Significant correlations exist between HTR and atmospheric processes over the Nordic Seas and the Eurasian continent only for low (periods longer than 40 years) and intermediate frequency variations (periods between 25 and 40 years). A positive HTR anomaly at 30°N is highly correlated with turbulent heat fluxes around 50°N. The transport through 70°N is directly related to the fluxes over the Nordic seas. From the correlation pattern with the atmospheric surface temperature and pressure one can conclude that the heat anomalies propagate along the cyclone tracks towards northeast over the Eurasian continent. The HRT anomalies are negatively correlated with the pressure over the Nordic seas and with the winter time anticyclone intensity over Siberia

    Quantum Capacity of a dephasing channel with memory

    Get PDF
    We show that the amount of coherent quantum information that can be reliably transmitted down a dephasing channel with memory is maximized by separable input states. In particular, we model the channel as a Markov chain or a multimode environment of oscillators. While in the first model the maximization is achieved for the maximally mixed input state, in the latter it is convenient to exploit the presence of a decoherence-protected subspace generated by memory effects. We explicitly compute the quantum channel capacity for the first model while numerical simulations suggest a lower bound for the latter. In both cases memory effects enhance the coherent information. We present results valid for arbitrary size of the input.Comment: Revised version, to be published in New Journal of Physic

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Scientific merits and analytical challenges of tree-ring densitometry

    Get PDF
    R.W. was supported by NERC grant NE/K003097/1.X-ray microdensitometry on annually-resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density parameter (MXD), but also increasingly through other density parameters. For fifty years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh ?long-standing wisdom?, but also provide new insights. Key outcomes include; i) a demonstration of the need for mass/volume based re-calibration to accurately estimate average ring density; ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density datasets for climate reconstructions; and iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate future inter-comparability and interpretations for global change research.Publisher PDFPeer reviewe

    Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2

    Get PDF
    Background: The synergetic effects of recent rising atmospheric CO2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Methodology/Principal Findings: Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9u latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53 % increases in WUE over the past century, growth decline (measured as a decrease in basal area increment – BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Conclusions: Our results show an unexpected widespread tree growth decline in temperate and boreal forests due t

    Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings

    Get PDF
    Low growth rates of atmospheric CO_2 were observed following the 1991 Pinatubo (Luzon) volcanic eruption. One hypothesis for this CO_2 anomaly is that since diffuse light is more efficiently used by forests than direct light, the increase in the diffuse fraction of sunlight due to scattering by volcanic sulfur aerosol in the years following the eruption substantially increased forest net primary production (NPP). However, other observations suggest a decrease in northern forest NPP because of the cooler conditions following the eruption. Here we used a global database of dated tree ring widths (which correlate with forest NPP) to test this hypothesis. Ice core records of sulfur deposition allowed us to identify the timing and magnitude of 23 Pinatubo‐scale eruptions since 1000 CE. We found a significant decrease in ring width for trees in middle to high northern latitudes (north of 45°N) following eruption sulfur peaks. Decreases in tree ring widths were in the range of 2–8% and persisted for ∼8 years following sulfur peaks, with minima at around 4–6 years. Ring width changes at lower latitudes in the Northern Hemisphere (30°N to 45°N) and in the Southern Hemisphere (30°S to 56°S) were not significant. In the tropics (30°N to 30°S) the paucity of tree ring records did not permit the evaluation of NPP changes. Given that elevated aerosol levels and summer cooling last only ∼2–3 years after an eruption, the persistence of declines in northern tree growth for up to 8 years after eruptions implies some additional mechanism that links these shorter‐lived global eruption effects to sustained changes in tree physiology, biogeochemistry, or microclimate. At least for this sample of trees, the beneficial effect of aerosol light scattering appears to be entirely offset by the deleterious effect of eruption‐induced climate change
    corecore