3,071 research outputs found
Giant reflection band and anomalous negative transmission in a resonant dielectric grating slab: application to a planar cavity
The fundamental optical effects that are at basis of giant reflection band
and anomalous negative transmission in a self-sustained rectangular dielectric
grating slab in P polarization and for incidence angle not very far from the
Brewster's angle of the equivalent slab, are investigated. Notice, that the
self sustained dielectric grating slab is the simplest system that, due to the
Bragg diffraction, can show both the former optical effects. A systematic study
of its optical response is performed by an analytical exact solution of the
Maxwell equations for a general incidence geometry. At variance of the well
known broad reflection bands in high contrast dielectric grating slab in the
sub-wavelength regime, obtained by the destructive interference between the
travelling fundamental wave and the first diffracted wave (a generalization of
the so called second kind Wood's anomalies), the giant reflection band is a
subtle effect due to the interplay, as well as among the travelling fundamental
wave and the first quasi-guided diffracted one, also among the higher in-plane
wave- vector components of the evanescent/divergent waves. To better describe
this effect we will compare the optical response of the self-sustained high
contrast dielectric grating slab with a system composed by an equivalent
homogeneous slab with a thin rectangular high contrast dielectric grating
engraved in one of the two surfaces, usually taken as a prototype for the
second kind Wood's anomalies generation. Finally, the electromagnetic field
confinement in a patterned planar cavity, where the mirrors are two
self-sustained rectangular dielectric grating slabs, is briefly discussed.Comment: 14 pages, 12 figures, submitted to Phys. Rev.
DES Y1 results:validating cosmological parameter estimation using simulated Dark Energy Surveys
Structural basis for recruitment of mitochondrial fission complexes by Fis1
Mitochondrial fission controls mitochondrial shape and physiology, including mitochondrial remodeling in apoptosis. During assembly of the yeast mitochondrial fission complex, the outer membrane protein Fis1 recruits the dynamin-related GTPase Dnm1 to mitochondria. Fis1 contains a tetratricopeptide repeat (TPR) domain and interacts with Dnm1 via the molecular adaptors Mdv1 and Caf4. By using crystallographic analysis of adaptor-Fis1 complexes, we show that these adaptors use two helices to bind to both the concave and convex surfaces of the Fis1 TPR domain. Fis1 therefore contains two interaction interfaces, a binding mode that, to our knowledge, has not been observed previously for TPR domains. Genetic and biochemical studies indicate that both binding interfaces are important for binding of Mdv1 and Caf4 to Fis1 and for mitochondrial fission activity in vivo. Our results reveal how Fis1 recruits the mitochondrial fission complex and will facilitate efforts to manipulate mitochondrial fission
Excitonic Effects in Quantum Wires
We review the effects of Coulomb correlation on the linear and non-linear
optical properties of semiconductor quantum wires, with emphasis on recent
results for the bound excitonic states. Our theoretical approach is based on
generalized semiconductor Bloch equations, and allows full three-dimensional
multisubband description of electron-hole correlation for arbitrary confinement
profiles. In particular, we consider V- and T-shaped structures for which
significant experimental advances were obtained recently. Above band gap, a
very general result obtained by this approach is that electron-hole Coulomb
correlation removes the inverse-square-root single-particle singularity in the
optical spectra at band edge, in agreement with previous reports from purely
one-dimensional models. Strong correlation effects on transitions in the
continuum are found to persist also at high densities of photoexcited carriers.
Below bandgap, we find that the same potential- (Coulomb) to kinetic-energy
ratio holds for quite different wire cross sections and compositions. As a
consequence, we identify a shape- and barrier-independent parameter that
governs a universal scaling law for exciton binding energy with size. Previous
indications that the shape of the wire cross-section may have important effects
on exciton binding are discussed in the light of the present results.Comment: Proc. OECS-5 Conference, G\"ottingen, 1997 (To appear in Phys. Stat.
Sol. (b)
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
Particle Physics from Almost Commutative Spacetimes
Our aim in this review article is to present the applications of Connes'
noncommutative geometry to elementary particle physics. Whereas the existing
literature is mostly focused on a mathematical audience, in this article we
introduce the ideas and concepts from noncommutative geometry using physicists'
terminology, gearing towards the predictions that can be derived from the
noncommutative description. Focusing on a light package of noncommutative
geometry (so-called 'almost commutative manifolds'), we shall introduce in
steps: electrodynamics, the electroweak model, culminating in the full Standard
Model. We hope that our approach helps in understanding the role noncommutative
geometry could play in describing particle physics models, eventually unifying
them with Einstein's (geometrical) theory of gravity.Comment: 104 pages, 5 figures, version 2 (minor changes and some additional
references
- …
