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ABSTRACT
We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year
1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar
analysis tools are applied to both simulations and real survey data, they provide powerful
validation tests of the DES Y1 cosmological analyses presented in companion papers. We use
two suites of galaxy simulations produced using different methods, which therefore provide
independent tests of our cosmological parameter inference. The cosmological analysis we
aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point
correlation functions of galaxy number counts and weak lensing shear, as well as their cross-
correlation, in multiple redshift bins. While our constraints depend on the specific set of
simulated realisations available, for both suites of simulations we find that the input cosmology
is consistent with the combined constraints from multiple simulated DES Y1 realizations in
the �m − σ 8 plane. For one of the suites, we are able to show with high confidence that
any biases in the inferred S8 = σ 8(�m/0.3)0.5 and �m are smaller than the DES Y1 1 − σ

uncertainties. For the other suite, for which we have fewer realizations, we are unable to be
this conclusive; we infer a roughly 60 per cent (70 per cent) probability that systematic bias in
the recovered �m (S8) is sub-dominant to the DES Y1 uncertainty. As cosmological analyses
of this kind become increasingly more precise, validation of parameter inference using survey
simulations will be essential to demonstrate robustness.
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1 IN T RO D U C T I O N

The combination of our best cosmological data sets and our best
theory of gravity supports our bizarre standard cosmological model:
a Universe dominated by dark energy and dark matter. Dark energy
is required to produce the observed acceleration of the Universe’s
expansion, and current observational constraints are consistent with
the description of dark energy as a cosmological constant, �. In
general, cosmological probes are sensitive to the properties of dark
energy either because of its effect on the Universe’s background
properties (e.g. expansion rate, or average matter density as a func-
tion of cosmic time), or its effect on the growth of structure (or
both). While some early indications that our Universe is not matter-
dominated came from galaxy clustering measurements sensitive to
the latter (e.g. Maddox, Efstathiou & Sutherland 1996), arguably
the most robust evidence for �CDM (� + cold dark matter) comes
from cosmological probes which are primarily sensitive to the for-
mer, known as geometrical probes. The most mature of these are
the distance-redshift relation of Type 1a supernovae (SN1a, e.g.
Betoule et al. 2014), and the baryon acoustic peaks in the cosmic
microwave background (e.g. Planck Collaboration et al. 2015) and
galaxy distributions (e.g. Alam et al. 2017; Ross et al. 2017). In-
deed, the SN1a analyses of Perlmutter et al. (1999) and Riess et al.
(1998) are considered the first convincing evidence of the Universe’s
late-time acceleration.

The development of more powerful probes of the growth of struc-
ture, as well as providing tighter constraints on the vanilla �CDM
model, are likely to be extremely useful for constraining deviations
from �CDM (e.g. Albrecht et al. 2006; Weinberg et al. 2013),
for example, models with time-evolving dark energy and modified
gravity, especially when combined with geometrical probes. Several
observational programs are underway (The Dark Energy Survey1

(DES), The Kilo-Degree Survey2 (KiDS), The Hyper Suprime-Cam
Subaru Strategic Survey3) that are designed to provide imaging in
the optical and near infra-red that is sufficiently deep, wide, and
high quality to enable competitive cosmological information to be
extracted from the Universe’s large-scale structure at z < 2. Mean-
while, future surveys carried out by the Large Synoptic Survey
Telescope4 (LSST), Euclid5, and the Wide-Field Infrared Survey
Telescope6 will enable order-of-magnitude improvements in cos-
mological constraints if systematic uncertainties can be controlled
sufficiently.

Much of the information on structure growth available to these
surveys lies well beyond the linear regime, so making theoretical
predictions to capitalize on this information is challenging, because
of computational expense (large N-body simulations are required),
and because there exists theoretical uncertainty on how to imple-
ment the baryonic physics that affects the matter distribution on
small scales (Vogelsberger et al. 2014; Schaye et al. 2015). Further
modelling challenges arise when objects such as galaxies or clusters
are used as tracers of the underlying matter field, since this requires
understanding the statistical connection between these objects and

1https://www.darkenergysurvey.org
2http://kids.strw.leidenuniv.nl
3http://www.subarutelescope.org/Projects/HSC
4http://www.lsst.org
5http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
6http://wfirst.gsfc.nasa.gov

the matter field. Cosmological simulations are crucial for tackling
both of these challenges, and are already widely used to predict
the clustering of matter on nonlinear scales (e.g. Smith et al. 2003;
Heitmann et al. 2010). Some recent works have used cosmologi-
cal simulations to directly make predictions for galaxy clustering
statistics (e.g. Kwan et al. 2015; Sinha et al. 2017).

The complexity of the analyses required to extract unbiased cos-
mological information from current and upcoming large-scale struc-
ture surveys demands thorough validation of the inference of cos-
mological parameters. Inevitably, approximations will be made in
the model, for example to allow for fast likelihood evaluation in
Markov chain Monte Carlo (MCMC) chains. While the impact of
many of these can be investigated analytically (for example the im-
pact of making the Limber approximation, or ignoring the effect of
lensing magnification on galaxy clustering statistics), this requires
the investigators to identify and characterize all of these effects
(and possibly their interactions) with sufficient accuracy. It would
be complacent to ignore the possibility that some of these effects
may slip through the net.

The modelling challenges described will be entangled with chal-
lenges related to the quality of the observational data such as spa-
tially correlated photometric and weak lensing shear estimation er-
rors, and photometric redshift uncertainties. It has been recognized
that analysis of realistic survey simulations, which can naturally
contain many of the theoretical and observational complexities of
real survey data, will play a crucial part in this validation, for ex-
ample both the Dark Energy Spectroscopic Instrument and LSST
Dark Energy Science collaborations plan to complete a series of
simulated data challenges before analysis of real survey data (e.g.
LSST Dark Energy Science Collaboration 2012). This is an espe-
cially powerful approach when one considers the importance of
performing a blind analysis of the real survey data – ideally one
can finalize all analysis choices, informed by analysis of the survey
simulations, before the analysis of the real data.

In this spirit, we use mock survey simulations for this task by
attempting to recover the input cosmological parameters of the sim-
ulations using a methodology closely resembling that used on the
real DES Year 1 (Y1) data in DES Collaboration et al. (2017). We
note that since we are not directly using these simulations to pro-
vide theoretical predictions for the analysis of the real data, having
simulations which match the properties of the real data in every
aspect is not essential, although, of course the more realistic the
simulations are, the more valuable the validation they provide. The
simulations used in this work reflect the current state of the survey
simulations used in the Dark Energy Survey, and are being improved
as the survey progresses; we discuss some potential improvements
in Section 6. One of the challenges of such an analysis is disen-
tangling biases in the inferred cosmological parameters caused by
flaws in the inference process from those caused by features of the
simulations that may not reflect the actual Universe. In this work,
we limit the amount of validation of the simulations themselves, in
an effort to produce results on a similar time-scale as the analyses
of real DES Y1 data.

This work considers two of the observables provided by galaxy
imaging surveys: the weak gravitational lensing shear, and the
galaxy number density. Probes of the growth of structure can be
thought of as those which depend on the clustering statistics of
the Universe’s matter field; both the galaxy number density and
the shear meet this requirement. Weak gravitational lensing is the
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observed distortion of light emitted from distant sources by varia-
tions in the gravitational potential due to intervening structures. In
galaxy imaging data, this manifests as distortions in the observed
size, brightness, and ellipticity of distant galaxies, which are re-
ferred to as source galaxies. The ellipticity distortion is known as
the shear, and is the most commonly used weak lensing observable
in galaxy surveys.

Since the shear field depends on the projected matter density
field (as well as the redshift of the source galaxies and the distance-
redshift relation), its N-point statistics are directly sensitive to the
N-point statistics of the intervening density field and the cosmolog-
ical parameters that determine these. Cosmic shear alone can there-
fore provide competitive cosmological constraints (Bartelmann &
Schneider 2001; Kilbinger 2015; Troxel et al. 2017). Here, we con-
sider two-point shear correlations, which are primarily sensitive to
the two-point correlation function of the matter over-density ξmm(r).

Galaxies, meanwhile are assumed to reside in massive gravita-
tionally bound clumps of matter often modelled as halos (spherical
or ellipsoidal overdensities in the matter field). Thus, while galaxies
trace the matter field (i.e. they are generally more likely to be found
where there is more mass), they do so in a biased way: the over-
density (the fractional excess with respect to the mean) in number
of galaxies at x is not the same as the overdensity in matter at x.
However, on sufficiently large scales, we can assume linear biasing,
such that the two-point correlation function of galaxies, ξ gg(r), can
be related to the matter two-point correlation function via (e.g. Fry
& Gaztanaga 1993)

ξgg(r) = b2
1ξmm(r). (1)

The constant of proportionality, b1, is known as the galaxy bias,
and depends on details of galaxy formation that most cosmologi-
cal analyses do not attempt to model from first principles, instead
leaving bias as a free nuisance parameter. In this case, galaxy clus-
tering measurements alone (at least in the linear bias regime), do not
provide strong constraints on the cosmologically sensitive matter
clustering amplitude – some other information is required to break
the degeneracy with the galaxy bias.

The cross-correlation between galaxy number density and shear,
also known as as galaxy–galaxy lensing, can provide this informa-
tion. It depends on the galaxy–matter cross-correlation, which in
the linear bias regime can also be related to ξmm via

ξgm(r) = b1ξmm(r). (2)

Hence, galaxy clustering and galaxy-shear cross-correlations de-
pend on complementary combinations of the galaxy bias and ξmm,
and can be combined to allow useful cosmological inference (e.g.
Mandelbaum et al. 2013; Kwan et al. 2017).

This work is a companion to a cosmological parameter estimation
analysis of Dark Energy Survey Year 1 (DES Y1) data, in which
we use the three aforementioned two-point signals: cosmic shear,
galaxy clustering, and galaxy-galaxy lensing to infer cosmological
parameters and test cosmological models (DES Collaboration et al.
2017). Further details on the cosmic shear, galaxy clustering, and
galaxy-galaxy lensing parts of the analysis are available in Troxel
et al. (2017), Elvin-Poole et al. (2017), and Prat et al. (2017), re-
spectively. These are therefore the statistics we measure and model
from the survey simulations considered in this work, in an attempt
to demonstrate robust cosmological parameter inference.

In Section 2, we describe the statistics estimated from the data,
and how they are modelled. In Section 3, we describe the suites
of simulations used. In Section 4, we describe the galaxy samples
used. In Section 5, we present the correlation function measure-

ments, our analysis choices (which closely follow those which are
used on the real data in DES Collaboration et al. 2017), and our
inferred cosmological parameters. We also test the robustness of
the constraints to photometric redshift errors. We conclude with a
discussion in Section 6.

2 TWO -POINT STATISTICS

We construct two galaxy samples – one suited to estimating galaxy
number density, and the other suited to estimating shear. We will re-
fer to the galaxy sample used to estimate number density as the lens
sample, and that used to estimate shear as the source sample. From
these two samples, we construct three types of angular correlation
functions - the auto-correlation of counts of the lens sample (galaxy
clustering), the auto-correlation of the shear of the source sample
(cosmic shear), and the cross-correlation between counts of the lens
sample and shear of the source sample (galaxy–galaxy lensing).

The galaxy clustering statistic we use is w(θ ), the excess num-
ber of galaxy pairs separated by angle θ over that expected from
randomly distributed galaxies, estimated using the optimal and un-
biased estimator of Landy & Szalay (1993). Meanwhile, the in-
formation in galaxy–galaxy lensing is well-captured by the mean
tangential shear, 〈γ t(θ )〉 (γ t(θ ) henceforth), the tangential compo-
nent of the shear with respect to the lens–source separation vector,
averaged over all lens–source pairs separated by angle θ . In our
estimation of the tangential shear, we include the subtraction of
the tangential shear signal around points randomly sampled from
the survey window function of the lens sample, which reduces the
effects of additive shear biases (e.g. Hirata et al. 2004) and cosmic
variance (Singh et al. 2017).

Since shear is a spin-2 field, one requires three two-point correla-
tion functions to capture the two-point information of the shear field.
One could use auto-correlations of the shear component tangential
to the separation vector, C++(θ ), auto-correlations of the shear at 45◦

to the separation vector, C× ×(θ ), and the cross-correlation C+×(θ ).
In practice, C+×(θ ) vanishes by parity arguments and we use the lin-
ear combinations of the remaining two correlations functions ξ±(θ )
= C++(θ ) ± C× ×(θ ).

We split both lens and source galaxies into multiple
bins in redshift, and measure correlation functions ζ ij (θ ) ∈{

wij (θ ), γ ij
t (θ ), ξ ij

+ (θ ), ξ ij
− (θ )

}
between redshift bins i and j.

We use superscripts in the following to denote quantities relating
to a particular redshift bin, so they should not be interpreted as
exponents. In general, an angular correlation function ζ

ij
αβ (θ ), can

be related to a corresponding projected angular power spectrum,
C

ij
αβ (l) via

ζ
ij
αβ (θ ) =

∑
l

2l + 1

4π
C

ij
αβ (l)dl

mn(θ ), (3)

where α and β represent the two quantities being correlated (galaxy
overdensity δg or shear γ ), and dl

nm(θ ) is the Wigner D-matrix. For
the galaxy correlation function, w(θ ), m = n = 0, and the Wigner-
D matrix reduces to the Legendre polynomial Pl(cos θ ). For the
tangential shear, γ t(θ ), m = 2 and n = 0, and the Wigner-D matrix
reduces to the associated Legendre polynomial P 2

l (cos θ ). For the
shear correlation functions ξ±(θ ), m = 2 and n = ±2; the Wigner
D-matrices in this case can also be written in terms of associated
Legendre polynomials (see Stebbins 1996 for the somewhat lengthy
expressions).
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D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/4/4614/5057483 by U
niversity of Portsm

outh Library user on 01 N
ovem

ber 2018



DES Y1: Validating inference on simulations 4617

In the small-angle limit, equation (3) can be approximated with
a Hankel transform

ζ
ij
αβ (θ ) =

∫
dl lC

ij
αβ (l)Jn(θ ), (4)

where n = 0 for w(θ ), n = 2 for γ t(θ ), n = 0 for ξ+(θ ) and n = 4
for ξ−(θ ). Krause et al. (2017) demonstrate that this approximation
is sufficient for this analysis at the accuracy of DES Y1.

The angular power spectra, C
ij
αβ (l) can be expressed in terms

of the corresponding three-dimensional power spectra Pαβ (k) as
(LoVerde & Afshordi 2008)

C
ij
αβ (l) =

∫ χh

0
dχD−1

A (χ )f i
α(χ )Jl+1/2(kχ )

∫ χh

0
dχ ′D−1

A (χ ′)f j
β (χ ′)Jl+1/2(kχ ′)

∫ ∞

0
dkkPαβ (k, χ, χ ′). (5)

χ is the comoving radial distance, DA(χ ) is the comoving angular
diameter distance, χh is the horizon distance, and f i

α(χ ) and f i
β (χ ′)

are the appropriate projection kernels for computing the projected
shear or number counts in redshift bin i from the shear or number
counts in three dimensions.

Under the Limber approximation (Limber 1953), equation (5) is
simplified to

C
ij
αβ (l) =

∫ χh

0
dχ

f i
α(χ )f i

β (χ )

D2
A(χ )

Pαβ (k = (l + 1/2)/χ, χ ). (6)

Predictions for each of the two-point correlation functions that
we use can therefore be derived using equations (4) and (6) (in the
flat-sky and Limber approximations); once we specify the appro-
priate power spectrum, Pαβ (k, χ ), and two radial kernels, f i

α(χ ) and
f i

β (χ ). For galaxy number counts, the projection kernel, fδg
(χ ) is

simply the comoving distance probability distribution of the galaxy
sample (in this case the lens sample) ni

lens(χ ), normalized so that∫
dχni

lens(χ ) = 1. For shear, the projection kernel for redshift bin i
is

f i
γ (χ ) = 3H 2

0 �mDA(χ )

2c2a(χ )

∫ χh

0
dχ ′ni

src(χ )
DA(χ ′ − χ )

DA(χ ′)
, (7)

where ni
src(χ ) is the comoving distance probability distribution of

the source galaxies.
It follows that for wij(θ ), the radial kernels are ni

lens(χ ) and
n

j

lens(χ ) and the power spectrum is the galaxy power spectrum,
P ij

gg(k, χ ). In our fiducial model, we assume linear bias, and thus
relate this to the matter power spectrum, Pmm(k, z), via

P ij
gg(k, z) = bi

1b
j

1Pmm(k, z), (8)

where bi
1 is a free linear galaxy bias parameter for redshift bin i,

assumed to be constant over the redshift range of each lens redshift
bin. In principle, there is also a shot noise contribution to the galaxy
power spectrum. However, we neglect this term since any constant
contribution to the power spectrum appears only at zero lag in the
real-space statistics we use here, and we do not use measurements
at zero-lag.

For γ
ij
t (θ ), the radial kernels are ni

lens(χ ) and f j
γ (χ ), and the

appropriate power spectrum is the galaxy–matter power spectrum
Pgm(k, χ ), which in the linear bias regime is given by

P ij
gm(k, χ ) = bi

1Pmm(k, χ ). (9)

Finally, for ξ
ij
± (θ ), the radial kernels are f i

γ (χ ) and f j
γ (χ ), and the

appropriate power spectrum is simply the matter power spectrum,
Pmm(k, χ ).

3 SU RV E Y SI M U L AT I O N S

We now describe the two suites of simulations used in this work,
which we will refer to as the BCC and MICE. The latter is already
well-documented in Fosalba et al. (2015a), Carretero et al. (2015),
and Fosalba et al. (2015b), hence we only include a brief description
in Section 3.2. It will be useful in the following to note a few details
of the DES Y1 dataset that is being simulated. The Year 1 dataset
is constructed from DECam (Flaugher et al. 2015) images taken
between August 2013 and February 2014 (see, e.g. Drlica-Wagner
et al. 2017). An area of 1786 deg2 was imaged in grizY, but the
cosmology analyses (DES Collaboration et al. 2017; Elvin-Poole
et al. 2017; Prat et al. 2017; Troxel et al. 2017) used only the
contiguous 1321 deg2 region known as “SPT” (Drlica-Wagner et al.
2017).

3.1 BCC simulations

We make use of a suite of 18 simulated DES Year 1 galaxy cat-
alogues constructed from dark matter-only N-body lightcones and
include galaxies with DES griz magnitudes with photometric errors
appropriate for the DES Y1 data, shapes, ellipticities sheared by
the underlying dark matter density field, and photometric redshift
estimates. The N-body simulations were generated assuming a flat
�CDM cosmology with �m = 0.286, �b = 0.047, ns = 0.96, h
= 0.7 and σ 8 = 0.82. A more detailed description of this suite of
simulations will be presented in DeRose et al. (2018). These mocks
are part of the ongoing ‘blind cosmology challenge’ effort within
DES, and hence are referred to as the BCC simulations.

3.1.1 N-body simulations

For the production of large-volume mock galaxy catalogues suitable
to model the DES survey volume, we use three different N-body
simulations per each set of 6 DES Year 1 catalogues. Any cos-
mological simulation requires a compromise between volume and
resolution; the use of three simulation boxes per lightcone is in-
tended to balance the requirements on volume and resolution which
change with redshift. At lower redshift, less volume is required for
the same sky area compared to higher redshift, but higher resolu-
tion is required to resolve the excess nonlinear structure on a given
comoving scale. Properties of the three simulations are summarized
in Table 1. All simulations are run using the code L-Gadget2, a pro-
prietary version of the Gadget-2 code (Springel 2005) optimized
for memory efficiency and designed explicitly to run large-volume
dark matter-only N-body simulations.

Additionally, we have modified this code to create a particle
lightcone output on the fly. Linear power spectra computed with
CAMB (Lewis 2004) were used with 2LPTic (Crocce, Pueblas &
Scoccimarro 2006) to produce the initial conditions using second-
order Lagrangian perturbation theory.

3.1.2 Galaxy model

Galaxy catalogues are built from the lightcone simulations using
the ADDGALS algorithm. We briefly describe the algorithm, and refer
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Table 1. Description of the N-body simulations used.

Simulation box size particle number mass resolution force resolution halo mass cut

BCC (0.00 < z < 0.34) 1.05 h−1 Gpc 14003 3.35 × 1010 h−1 M	 20 h−1 kpc 3.0 × 1012 h−1 M	
BCC (0.34 < z < 0.90) 2.60 h−1 Gpc 20483 1.62 × 1011 h−1 M	 35 h−1 kpc 3.0 × 1012 h−1 M	
BCC (0.90 < z < 2.35) 4.00 h−1 Gpc 20483 5.91 × 1011 h−1 M	 53 h−1 kpc 2.4 × 1013 h−1 M	
MICE 3.07 h−1 Gpc 40963 2.93 × 1010 h−1 M	 50 h−1 kpc ∼1011 h−1 M	

the reader to Wechsler et al. (2018) and DeRose et al. (2018) for
more details.

The main strengths of this algorithm are its ability to reproduce
the magnitude-dependent clustering signal found in subhalo abun-
dance matching (SHAM) models, and its use of empirical models
for galaxy spectral energy distributions (SEDs) to match colour
distributions. SHAM models have been shown to provide excel-
lent fits to observed clustering data (Conroy, Wechsler & Kravtsov
2006; Lehmann et al. 2017), thus by matching SHAM predictions,
ADDGALS is able to accurately reproduce observed clustering mea-
surements as well.

The ADDGALS algorithm can be subdivided into two main parts.
First, using a SHAM on a high-resolution N-body simulation, we fit
two independent parts of the galaxy model: p(δ|Mr, z), the distribu-
tion of matter overdensity, δ, given galaxy absolute magnitude, Mr,
and redshift, z, and p(Mr, cen|Mhalo, z), the distribution of r-band ab-
solute magnitude of central galaxies, Mr, cen, given host halo mass,
Mhalo, and redshift. To do this, we subhalo abundance match a lu-
minosity function φ(Mr, z), which has been constrained to match
DES Y1 observed galaxy counts, to 100 different redshift snapshots
and measure δ centered on every galaxy in the SHAM. The model
for p(δ|Mr, z) is then fit to histograms of δ in narrow magnitude
bins in the SHAM in each snapshot. The model for p(Mr, cen|Mhalo,
z) is similarly constrained by fitting to the distributions of Mr, cen in
bins of Mhalo for each snapshot. Wechsler et al. (2018) shows that
reproducing these distributions is sufficient to match the projected
clustering found in the SHAM.

Now, using φ(Mr, z), p(δ|Mr, z) and p(Mr, cen|Mhalo, z), we add
galaxies to our lightcone simulations. Working in redshift slices
spanning zlow < z ≤ zhigh, we first place galaxies on every resolved
central halo in the redshift shell, where the mass of a resolved halo,
Mmin,is given in Table 1, drawing its luminosity from p(Mr, cen|Mhalo,
z). As these simulations are relatively low-resolution, this process
only accounts for a few per cent of the galaxies that DES ob-
serves. For the rest, we create a catalogue of galaxies with abso-
lute magnitudes {Mr, i} and redshifts {zi}, with i = 1, . . . , N and
N = ∫ zhigh

zlow
dz dV

dz
φunres(Mr, z), where

φunres(Mr, z) = φ(Mr, z) − φres(Mr, z) (10)

= φ(Mr, z) (11)

−
∫ ∞

Mmin

dMhalop(Mr,cen|Mhalo, z)n(Mhalo, z). (12)

Each Mr, i is drawn from φunres(Mr, zmean), where zmean is the mean
redshift of the slice, and each zi is drawn uniformly between zlow <zi

≤ zhigh. It can be shown that this uniform distribution is appropriate,
since the distribution of particles in the lightcone already accounts
for the change in comoving volume element as a function of redshift,
dV
dz

. Finally, in order to determine where to place each galaxy, we
draw densities {δi} from p(δ|Mr, i, zi), and assign the galaxies to
particles in the lightcone with the appropriate density and redshift.

Notably, we make no explicit classification of galaxies as centrals
or satellites when they are assigned in this way.

Once galaxies have been assigned positions and r-band absolute
magnitudes, we measure the projected distance to their fifth nearest
neighbour in redshift bins of width �z = 0.05. We then bin galaxies
in Mr and rank-order them in terms of this projected distance. We
compile a training set consisting of the magnitude-limited spectro-
scopic SDSS DR6 VAGC cut to z < 0.2 and local density measure-
ments from Cooper et al. (2006). This training set is rank-ordered
the same way as the simulation. Rank-ordering the densities allows
us to use a non-volume-limited sample in the data, since this rank is
preserved under the assumption that galaxies of all luminosities are
positively biased. Each simulated galaxy is assigned the SED from
the galaxy in the training set with the closest density rank in the
same absolute magnitude bin. The SED is represented as a sum of
templates from Blanton et al. (2003), which can then be used to shift
the SED to the correct reference frame and generate magnitudes in
DES band passes. While the use of this training set neglects the
evolution of the relationship between rank local density and SED
between z < 0.2 and the higher redshifts probed by DES, it does
provide a sample with high completeness over the required range of
galaxy luminosity. The use of rank density should reduce the amount
of redshift evolution in this relationship, but residual effects may be
present in the colour-dependent clustering of the BCC simulations.
While the agreement between red MaGiC angular clustering in the
data and the BCC simulations is generally good, there are some
redshift-dependent differences that could be partially attributable
to this effect (DeRose et al. 2018). Planned improvements of the
algorithm will take advantage of higher redshift spectroscopic data
sets.

Galaxy sizes and ellipticities are assigned based on the galaxies’
observed i-band magnitude based on fits to the joint distribution
of these quantities in high-resolution Suprime-Cam data (Miyazaki
et al. 2002).

3.1.3 Raytracing

In order to derive weak lensing quantities for each galaxy, we em-
ploy a multiple-plane raytracing algorithm called CALCLENS (Becker
2013). The raytracing is done on an nside = 4096 HEALPIX (Górski
et al. 2005) grid, leading to an angular resolution of approximately
0.85

′
. At each lens plane, the Poisson equation is solved using

a spherical harmonic transform, thus properly accounting for sky
curvature and boundary conditions. The inverse magnification ma-
trix is interpolated from each ray at the centre of each lens plane
to the correct angle and comoving distance of each galaxy. The
magnitudes, shapes, and ellipticities of the galaxies are then lensed
using this information.

3.1.4 Photometric errors and footprint

To create each of the BCC Y1 catalogues, a rotation is applied to
the simulated galaxies to bring them into the DES Y1 SPT footprint
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described in Section 3. The DES Y1 mask is applied and the area
with RA < 0 is cut in order to fit 6 Y1 footprints into each simulation,
leaving an area of 1122 deg2 out of the original 1321 deg2. Applying
this cut allows us to use more area in each simulated half-sky
(without the cut, we are only able to fit 2 Y1 footprints into each
simulated half-sky without overlap), and therefore allows us to
test our cosmological parameter inference with greater statistical
precision. Photometric errors are applied to the BCC catalogues
using the DES Y1 Multi-Object Fitting (MOF) depth maps. The
errors depend only on the true observed flux of the galaxy and its
position in the footprint, and not on its surface brightness profile.

3.2 MICE simulations

We use the MICE Grand Challenge simulation (MICE-GC), which
is well-documented in Fosalba et al. (2015a); Carretero et al. (2015);
Fosalba et al. (2015b); we provide a brief description here for conve-
nience. MICE-GC constitutes a 3 Gpc h−1 N-body simulation with
40963 particles, produced using the Gadget-2 code (Springel 2005)
as described in Fosalba et al. (2015b). The cosmological model
is flat �CDM with �m = 0.25, �b = 0.044, ns = 0.95, h = 0.7
and σ 8 = 0.8. The mass resolution is 2.93 × 1010 h−1 M	 and
the force softening length is 50 h−1 kpc. Halos are identified using
a Friends-of-Friends algorithm (with linking length 0.2 times the
mean inter-particle distance) and these are populated with galaxies
via a hybrid sub-halo abundance matching (SHAM) and halo occu-
pation distribution (HOD) approach (Carretero et al. 2015) designed
to match the joint distributions of luminosity, g − r color, and clus-
tering amplitude observed in SDSS (Blanton et al. 2003; Zehavi
et al. 2005). Weak lensing quantities are generated on an HEALPIX
grid of Nside = 8192 (an angular resolution of ≈0.4

′
) assuming the

Born approximation (see Fosalba et al. 2015a for details).
We rotate the MICE octant into the DES Y1 footprint and imprint

the spatial depth variations in the real DES Y1 data onto the MICE
galaxy magnitudes using the same method as for the BCC (see
Section 3.1.4). We find we can apply two such rotations which
retain the majority of the Y1 area and have little overlap in the Y1
area. Hence, we have two MICE-Y1 realizations.

3.3 Notable differences between the mock catalogues

We note the following significant differences between the mock
catalogues constructed from the BCC and MICE simulations:

(i) Volume of data: We have 18 DES Y1 realizations for the BCC
simulations, in principle allowing a measurement of any bias in
the recovered cosmological parameters with uncertainty 1/

√
18 of

the DES Y1 statistical error. We note that the slightly smaller area
used for the BCC simlations will result in a small loss of constrain-
ing power. For MICE on the other hand, we expect uncertainty
on the recovered parameters that is more comparable to the DES
Y1 statistical errors (a factor of 1/

√
2 smaller). Ideally, the uncer-

tainty on the inferred parameter biases should be subdominant to
the achieved parameter constraint for DES Y1. Clearly what consti-
tutes ‘subdominant’ is somewhat subjective, but we consider the 18
BCC realizations as satisfactory in this respect, while more MICE
realizations would be desirable to satisfy this requirement.

(ii) Each BCC realization is constructed from three independent
simulation boxes, resulting in discontinuities in the density field
where they are joined together, while MICE uses a single box.

(iii) Resolution: The mass resolution of the lowest redshift BCC
simulation box (2.7 × 1010 h−1 M	) is similar to MICE (2.93 ×

1010 h−1 M	) with significantly higher force resolution, while the
higher redshift boxes have signifcantly lower mass resolution (see
Table 1) and comparable force resolution.

(iv) Galaxies are added to the N-body simulations using different
methods (BCC uses ADDGALS, while MICE uses a hybrid SHAM and
HOD approach); in general, this will lead to different galaxy bias
behaviour in the non-linear regime.

(v) Weak lensing quantities in BCC are calculated using full
ray-tracing, whereas in MICE they are calculated under the Born
approximation. We do not, however expect this difference to be sig-
nificant for the relatively large-scale observables considered here;
indeed, we do not include beyond-Born approximation contribu-
tions in the theoretical modeling of the lensing signals used in our
cosmological parameter inference.

(vi) For BCC, we use BPZ (Benı́tez 2000) photometric redshift
estimates, the fiducial photo-z method used for the weak lensing
source galaxies on the real DES Y1 data. For MICE, we use true
redshifts for the weak lensing galaxies throughout.

4 G ALAXY SAMPLES

We select two different galaxy samples from the mock catalogues,
chosen based on their suitability to probe the galaxy number density
(and act as the lens sample for the galaxy–galaxy lensing) and weak
lensing shear fields, respectively.

4.1 Lens sample

To probe the galaxy number density, we use galaxies selected using
the REDMAGIC algorithm (Rozo et al. 2016). REDMAGIC fits an em-
pirically calibrated red-sequence template to all objects, and then
selects those which exceed some luminosity threshold (assuming
the photometric redshift inferred from the red-sequence template
fit), and whose colours provide a good fit to the red-sequence tem-
plate. This allows selection of a bright, red, galaxy sample with
approximately constant comoving number density. The fact that
they are close to the red sequence allows a high-quality photomet-
ric redshift (photo-z) estimation – the REDMAGIC galaxies used in the
DES Y1 analyses (Elvin-Poole et al. 2017; DES Collaboration et al.
2017) have an average standard error, σ z = 0.017(1 + z). We refer
to the photo-zs estimated by the REDMAGIC algorithm as zRM.

As in Elvin-Poole et al. (2017) and DES Collaboration et al.
(2017), we split the REDMAGIC sample into five redshift bins, de-
fined 0.15 < zRM < 0.3, 0.3 < zRM < 0.45, 0.45 < zRM < 0.6, 0.6 <

zRM < 0.75, 0.75 < zRM < 0.9. For the first three redshift bins, the
REDMAGIC high-density sample is used (luminosity, L > 0.5L∗;
number density, ngal = 4 × 10−3 Mpc−3), while the fourth and
fifth redshift bins are selected from the high luminosity (L >

L∗, ngal = 1 × 10−3 Mpc−3) and higher luminosity (L > 1.5L∗,
ngal = 1 × 10−4 Mpc−3) samples, respectively. Selecting brighter
galaxies at high-redshift allows the construction of a sample with
close to uniform completeness over the majority of the DES Year 1
footprint. The true redshift distributions7 (n(z)s henceforth) of the
REDMAGIC galaxies are shown as the red solid lines in Fig. 1. These
are histograms of the true redshift (ztrue) for all galaxies within a
given bin.

The n(z)s can also be estimated using, zRM, and the associated
uncertainty, σ (zRM), which is also provided by the REDMAGIC algo-
rithm. These quantities are designed such that the probability of a

7The comoving galaxy number density as a function of redshift.
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4620 N. MacCrann et al.

Figure 1. Redshift distributions for the galaxy samples used. Red and blue indicate the REDMAGIC (lens) galaxies and the weak lensing source galaxies,
respectively. Solid and dashed lines indicate the true distributions and those estimated from photometric redshifts, respectively. Left-hand panel: BCC, right-
hand panel: MICE. As discussed in Section 4.2, we do not have BPZ photo-z estimates for the weak lensing source sample in MICE and by construction the
true source redshift distributions match the BPZ estimates for the real data, apart from above z = 1.4, the maximum redshift of the MICE galaxies. For visual
clarity, the lens and source redshift distributions have arbitrary normalization.

REDMAGIC galaxy having true redshift ztrue, p(ztrue|zRM) is well ap-
proximated by a Gaussian distribution with mean and σ given by
zRM and σ (zRM), respectively. Thus, the redshift distribution of each
REDMAGIC tomographic bin can be estimated by stacking this Gaus-
sian p(ztrue|zRM) estimate over all objects in that bin. This is how the
REDMAGIC n(z)s are estimated on the real data, where true redshifts
are not available, and is shown as the dashed red lines in Fig. 1.

For BCC, the visual agreement is good although there are some
differences, for example the n(z) looks to be underestimated at
the high-redshift end of the first three redshift bins. For MICE,
the REDMAGIC photo-z estimate also performs well, although some
bias is apparent for the highest three redshift bins. Averaged over
all simulations, there are 580 000 galaxies in our lens sample in
BCC, compared with 660 000 in the DES Y1 data. Accounting for
the difference in the areas of the footprints, these numbers agree
to 5 per cent accuracy. This result also holds for the MICE lens
sample, which contains 590 000 galaxies.

4.2 Weak lensing source sample

Unlike galaxy clustering measurements, for shear correlation func-
tion measurements, a galaxy sample whose completeness varies
across the sky can be used, since number density fluctuations are
not the quantity of interest. Instead, we require the sample to pro-
vide an unbiased estimate of the shear in any region of the sky.
As in Section 2, we call this sample the source sample. We note
that fluctuations in the galaxy number density can produce higher
order effects on weak lensing statistics (see e.g. Hamana et al. 2002;
Schmidt et al. 2009), but are below the few per cent level for the an-
gular scales used here (MacCrann et al. 2017). For the real DES Y1
data, the weak lensing source selection depends on the outputs of
5+ parameter model-fitting shear estimation codes. To simulate this
selection would require propagating our mock galaxy catalogues
into image simulations with realistic galaxy appearances, which is
beyond the scope of this work.

For the BCC, we perform cuts on galaxies’ signal-to-noise and
size relative to the point-spread-function (PSF) (assuming the spatial
noise and PSF size distributions observed in the DES Y1 data) that

yield a sample with similar number density as the weak lensing
sample in the real data. Specifically, we make the following cuts:

(i) Mask all regions of the footprint where limiting magnitudes
and PSF sizes cannot be estimated.

(ii) mr < −2.5log10(1.5) + mr, lim

(iii)
√

r2
gal + (0.13rPSF)2 > 1.25rPSF

(iv) mr < 22.01 + 1.217z

where mr, lim and rPSF are the limiting magnitude and PSF FWHM
estimated from the data at the position of each galaxy. The first two
cuts approximate signal-to-noise-related cuts that are be applied to
shape catalogues in the data. Using only these, the BCC simulations
yield number densities that exceed those found in the data, so also
apply the third cut in order to more closely match the DES Y1 shape
noise.

We then use the provided BPZ (Benı́tez 2000) photometric red-
shift estimates (BPZ is the fiducial method used to estimate photo-
metric redshifts of the source galaxies in the real DES Y1 data, see
Hoyle et al. 2017) to split the source sample into redshift bins. As in
DES Collaboration et al. (2017), we split the weak lensing sample
into four redshift bins, based on the mean of the BPZ redshift PDF,
zmean. Given that the size of the photometric redshift uncertainties
is comparable to the bin widths, there is little to be gained by using
more redshift bins. The four redshift bins are defined 0.2 < zmean <

0.43, 0.43 < zmean < 0.63, 0.63 < zmean < 0.9, 0.9 < zmean < 1.3.
The n(z)s of the source sample are shown as the blue lines in Fig. 1.
The histograms of true redshift for each bin are shown as solid
lines, and n(z)s estimated using the BPZ redshift PDF estimates are
shown as dashed lines. Again, some mis-estimation of the true n(z)s
is apparent; we assess the impact of this in Section 5.4.

We do not have photometric redshift estimates for the MICE
catalogs; so, instead randomly sample MICE galaxies to produce
the same tomographic n(z)s as estimated by BPZ on the real data.
In detail, we take the BPZ n(z) estimates for the source sample from
Hoyle et al. (2017), and for objects at a given true redshift in the
MICE catalogs, we randomly assign a redshift bin with probability
given by the relative amplitude of each tomographic n(z) at that
redshift. We additionally assign the MICE galaxies weights so that
the weighted n(z) for each tomographic bin matches the shape of
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the BPZ n(z) (within the redshift range of the MICE galaxies, which
does not extend above z = 1.4). The resulting n(z)s are shown in
the right-hand panel of Fig. 1.

We add Gaussian-distributed shape noise to the MICE source
sample galaxies such that σ 2

e /neff , (where σ e is the ellipticity disper-
sion, and neff is the effective galaxy number per unit area) matches
the DES Y1 data. This ensures the covariance of the lensing statis-
tics have the same shape noise contribution as the real DES Y1 data.
Averaged over all BCC simulations, there are 23 million galaxies,
compared to 26 million in the Y1 data. Taking into account the
differences in area, these agree to 5.5 per cent accuracy.

5 R ESULTS

In this section, we present measurements of the two-point corre-
lation functions described in Section 2 on the galaxy samples de-
scribed in Section 4. We then summarize the choices made for the
analysis of these measurements, and finally present cosmological
parameter constraints, and discuss how these should be interpreted.

5.1 Measurements and covariance

We estimate the two-point correlation functions using TREECORR8

(Jarvis, Bernstein & Jain 2004). We compute correlation functions
for all redshift bin combinations, i.e. 15 combinations for w(θ ),
20 combinations for γ t(θ ), and 10 combinations for ξ±(θ ). We
compute the correlation functions in 20 log-spaced angular bins in
the angular range 2.5 < θ < 250 arcmin.

We show in the Appendix all the two-point correlation function
measurements used. Figs A1–A4 show the two-point measurements
on the BCC sims. Figs A5–A8 are the corresponding plots for the
MICE-Y1 catalogs. Shaded regions indicated angular scales not
used in the fiducial cosmological analysis because of theoretical
uncertainties in the non-linear regime.

For all individual two-point functions and their combinations, we
use the covariance matrix presented in Krause et al. (2017), which
uses an analytic treatment of the non-Gaussian terms (Eifler et al.
2014; Krause & Eifler 2017) based on the halo model (Peacock &
Smith 2000; Seljak 2000). We calculate the covariance assuming
the true cosmology for each simulation. This is clearly not possible
in an analysis of real data, where using an incorrect assumed cos-
mology (or, in fact not including the parameter dependence of the
covariance matrix) could potentially introduce parameter biases.
However, DES Collaboration et al. (2017) did demonstrate there
was negligible change in the parameter constraints when using two
different cosmologies to calculate the covariance matrix, so we do
not believe our conclusions are very sensitive to this choice.

In the covariance calculation, we do not include the survey ge-
ometry corrections to the pure shape or shot noise covariance terms
discussed in Troxel et al. (2018). For the DES Y1 geometry, the
correction to the pure shot and shape noise contributions to the co-
variance are at most ∼20 per cent, and this is at the largest scales,
where shot/shape noise is generally subdominant.

We also do not include redshift bin cross correlations in w(θ ),
since we do not expect the fiducial theoretical model used, which
assumes the Limber approximation and does not include redshift
space distortions or magnification contributions, to be sufficiently
accurate for these parts of the data vector (see e.g. LoVerde &
Afshordi 2008, Montanari & Durrer 2015 for the importance of

8https://github.com/rmjarvis/TreeCorr

not using the Limber approximation, and including magnification,
respectively for widely separated redshift bins).

5.2 Analysis choices

We summarize below our analysis choices, which closely follow
those of Krause et al. (2017) and DES Collaboration et al. (2017),
where the methodology and the application to data of the DES Y1
key cosmological analysis are described.

(i) Gaussian Likelihood. We assume the measured datavectors
are multivariate-Gaussian distributed, with the covariance matrix
described in Section 5.1. We note this is an approximation (see e.g.
Sellentin & Heavens 2018); but any impact on parameter constraints
will be mitigated by the significant contributions of shot noise and
shape noise to the covariance matrix.

(ii) Minimum angular scales. For w(θ ) and γ t(θ ), we use min-
imum angular scales corresponding to 8 h−1 Mpc and 12 h−1 Mpc
at the mean redshift of the lens redshift bin, respectively (following
DES Collaboration et al. 2017; Krause et al. 2017). These minimum
scales are justified in Krause et al. (2017), who studied the potential
impact of ignoring non-linear galaxy bias on the inferred cosmo-
logical parameters. This was estimated by generating fake DES
Y1-like datavectors which included analytic models for non-linear
galaxy bias, which were used as input to a cosmological param-
eter estimation pipeline that assumed linear bias. The minimum
scales were chosen such that biases in cosmological parameters
were small compared to the uncertainties on those parameters. The
analysis of galaxy simulations in this work provides a further test
of the effectiveness of these scale cuts.
For ξ±, we use the same minimum angular scales as Troxel et al.
(2017) and DES Collaboration et al. (2017), where we use the
following procedure: for each redshift bin combination, we calculate
the fractional difference in the expected signal when the matter
power spectrum prediction used is modulated using templates from
the OWLS simualations (Schaye et al. 2010). Separately for ξ+

and ξ− and for each redshift bin combination, we cut all angular
scales smaller than and including the largest angular scale where
the fractional difference exceeds 2 per cent. While this scale cut was
motivated in Troxel et al. (2017) by the possibility of systematic
biases due to baryonic physics not included in the simulations used
here, we use it since removing these small scales will reduce the
impact of finite simulation resolution on the cosmic shear signal.

(iii) Galaxy bias model As in the real data analysis (DES Col-
laboration et al. 2017), we marginalize over a single linear bias pa-
rameter, bi

1 per lens redshift bin i. We assume no redshift evolution
of the bias across each redshift bin, but have verified that assuming
passive evolution within a redshift bin i.e. bi(z)∝D(z), where D(z)
is the linear growth factor, produces negligible differences in our
parameter constraints.

(iv) Redshifts. For the results in Section 5.3 we use true redshifts
to construct the n(z)s for the theory predictions. As discussed in
Section 5.4, we find indications that the performance of BPZ on
the BCC simulations is significantly worse than on the real data.
Therefore, while we still use BPZ point redshift estimates to place
galaxies in tomographic bins throughout, in Section 5.3 we show
constraints which use true redshift information to construct the n(z)
(which enters the projection kernels fα(χ ) in equation 6).

(v) Matter power spectrum. Following DES Collaboration et al.
(2017), we use CAMB to calculate the linear matter power spectrum
and HALOFIT (Smith et al. 2003; Takahashi et al. 2012) to model the
nonlinear matter power spectrum.
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(vi) Limber approximation. We use the Limber approxima-
tion to calculate all angular power spectra and do not include the
contributions from redshift-space distortions; Krause et al. (2017)
demonstrate that this is sufficiently accurate for DES Y1.

(vii) Free parameters. As well as five linear galaxy bias pa-
rameters, bi

1, we marginalize over the same set of cosmological
parameters (and use the same priors) as in DES Collaboration et al.
(2017), with the exception of the sum of neutrino masses,

∑
mν .

Since
∑

mν = 0 in both simulations suites, using a prior of
∑

mν

> 0, would inevitably bias the inferred
∑

mν = 0 high, and given it
is degenerate with other cosmological parameters, this would bias
the inference of the other cosmological parameters. We also do not
include nuisance parameters designed to account for effects not
present in the simulations (so unlike the DES Collaboration et al.
2017, we do not maginalize over intrinsic alignment parameters or
shear calibration uncertainties).

5.3 Fiducial cosmological parameter constraints

Having made measurements from all simulation realizations, and
defined a modelling framework to apply to them, it is worth taking
a step back to think about what information we wish to extract.
Our aim is to estimate systematic biases in inferred parameters due
to failures in our analysis and modelling of the simulations. We
note that of course we will only be sensitive to those sources of
systematic biases that are present in the simulations. For example,
neither simulation suite here includes galaxy intrinsic alignments
(and we do not include this effect in our modelling). Furthermore, as
noted in Section 5.2, we remove the effect of photometric redshift
biases for the results shown in this section, and use true redshift
information (we discuss the photometric redshift performance for
the BCC simulations in Section 5.4).

We estimate the size of systematic biases in our inferred param-
eters in the following way. We assume P sys(θ , si), the potentially
systematically biased posterior on parameters θ we infer from a sim-
ulated datavector si is related to the true posterior by some constant
translation in parameter space:

P sys(θ , si) = P (θ − �θ |si). (13)

We wish to estimate the posterior on �θ . We start by consider-
ing P (si |θ , �θ ), the probability of drawing simulated datavector si

given a value of �θ , and a set of true parameters (i.e. those input
to the simulation), θ true. This probability is independent of �θ such
that

P (si |θ true, �θ ) = P (si |θ true) (14)

= P (θ true|si)P (si)

P (θ true)
(15)

= P sys(θ true + �θ , si)P (si)

P (θ true)
(16)

where in the second line we have used Bayes’ theorem, and we have
substituted equation (13) in the third line. We can again use Bayes’
theorem to rewrite the left-hand side:

P (�θ |si , θ true) = P (si |θ true, �θ )P (�θ)

P (si)
. (17)

Substituting equation (16), and assuming a flat prior P (�θ), we
have

P (�θ |si , θ true) ∝ P sys(θ true + �θ , si). (18)

This result makes sense intuitively – our potentially biased inferred
posterior P sys(θ , si) can be interpreted as the probability that the
systematic bias �θ is equal to θ − θ true. Thus, if we find P sys(θ , si)
is consistent with θ = θ true, this implies �θ is consistent with zero.

Assuming our N simulated realizations are independent,9 it fol-
lows that

P ({si}|θ true, �θ ) =
N∏

i=1

P (si |θ true, �θ ), (19)

and

P (�θ |{si}, θ true) ∝
N∏

i=1

P sys(θ true + �θ , si). (20)

In summary, we can estimate the systematic bias in our inferred
parameters by computing the (potentially biased) parameter poste-
rior P sys(θ , si) from each simulation realization, and taking their
product.

In this section, we focus on studying biases in �m and σ 8, the only
two cosmological parameters well-constrained by DES Y1 data in
DES Collaboration et al. (2017). The top panels of Fig. 2 shows
constraints on �m and σ 8 from the BCC (top-left) and MICE (top-
right) simulation suites, using all three two-point functions (ξ±(θ ),
γ t(θ ), and w(θ )). The dark orchid contours are the combined con-
straints from all realizations, calculated from the single-realization
posteriors (shown in grey), using equation (20). Here and in all
other plots, the contours indicate the 68 per cent and 95 per cent
confidence regions.

For both MICE and BCC, the true cosmology (indicated by the
black dashed lines) is within the 95 per cent contour, so we find
no strong evidence for a non-zero �θ . In the middle panels, we
show the marginalized posteriors for the well-constrained parameter
combination S8 = σ 8(�m/0.3)0.5; again, the true value of S8 is within
the 95 per cent confidence region (indicated by the lighter shaded
region under the posterior curve). Finally, the lower panels show
the marginalized posteriors for �m, which again are fully consistent
with the true value for both BCC and MICE.

For comparison, in all panels we also indicate with green dashed
lines the uncertainty on the parameters recovered from the real
DES Y1 data in DES Collaboration et al. (2017), as 68 per cent
and 95 per cent marginalised contours in the top row, and marginal-
ized 1σ uncertainties in the middle and bottom rows. These uncer-
tainties include marginalization over nuisance parameters, includ-
ing those accounting for shear calibration uncertainty and intrinsic
alignments, which were not considered in the analysis of the simu-
lations in this work.

Fig. 3 meanwhile shows the constraints in the �m − σ 8 plane for
subsets of the datavector for the BCC (left-hand panel) and MICE
simulations (right-hand panel). Again, these contours represent the
combination of the posteriors from all individual simulation real-
izations. In both panels, the constraints from cosmic-shear only are

9We note that for neither of the simulation suites used here is this really true.
For BCC, each set of 6 DES Y1 realizations is sourced from the same set of
three N-body simulations, while for MICE, the two realizations are sourced
from the same N-body simulation. While we ensure our Y1 realizations
are extracted from non-overlapping regions, there will still be large-scale
correlations between them. For our application, ignoring this is conservative,
since unaccounted-for correlations between the realizations would tend to
lead to fluctuations in the inferred parameters from their true values that
are correlated between realizations, leading to over-estimates of systematic
biases.
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DES Y1: Validating inference on simulations 4623

Figure 2. Cosmological constraints from all three two-point functions for the BCC (left-hand panels, 18 realizations) and MICE (right-hand panels, two
realizations) simulation suites. The top panels show constraints on the present-day matter density, �m and the clustering amplitude, σ 8. Contours contain
68 per cent and 95 per cent of the posterior probability. Grey contours show constraints from individual simulation realizations, while purple contours show
the combination of these posteriors (see equation 20). The middle and bottom panels show the marginalized constraints on S8 = σ 8 × (�m/0.3)0.5, and �m,
respectively. In all panels, the true parameter values (i.e. those input to the simulations) are indicated by the black dashed lines. In the top panels, the green
dashed lines indicate the 68 per cent and 95 per cent confidence regions recovered from the real DES Y1 data in DES Collaboration et al. (2017), shifted to be
centred on the input cosmology to the simulations. In the middle and lower-panels, the green dashed lines indicate the size of the 1 − σ uncertainty from DES
Collaboration et al. (2017).

shown as the green dashed unfilled contours (labelled ‘ξ±’), those
from galaxy–galaxy lensing and galaxy clustering are shown as
solid orange unfilled contours (labelled ‘w + γ t’), and those from
all three two-point functions are shown as filled dark-orchid con-
tours (labelled ‘ξ± + w + γ t’, these are the same as those in the upper

panels of Fig. 2). For both BCC and MICE, we see good agreement
between the datavector subsets, and no evidence for disagreement
with the true cosmology.

We can use these parameter constraints to make estimates of
the biases in inferred parameters produced by systematic biases in
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4624 N. MacCrann et al.

Figure 3. Constraints on the present day-matter density, �m and the clustering amplitude, σ 8 from all three two-point functions (filled purple contours, labeled
‘ξ± + γ t + w’), cosmic shear-only (dashed green contours, labeled ‘ξ±’), and galaxy-galaxy lensing and clustering (solid-lined orange contours, labeled ‘γ t +
w’), for the BCC simulations (left-hand panel) and MICE simulations (right-hand panel). We show combined constraints from all simulation realizations. The
intersection of the black dashed lines indicates the true parameter values (i.e. those input to the simulations).

the parameter inference (assuming perfect simulations). Note that
these estimates are conditional on the specific set of simulated data
that were realized, {si}. Clearly, it is desirable to have systematic
biases be sub-dominant to statistical uncertainties. Therefore, for
constraints from all three two-point functions, we report the prob-
ability that the bias in the inferred parameter θ (where θ is �m or
S8) are within σ Y1(θ ) of their true values, where σ Y1(θ ) is the 1σ

uncertainty on parameter θ recovered by DES Collaboration et al.
(2017). We denote this quantity P(�θ < σ Y1). DES Collaboration
et al. (2017) find σ Y1(S8) = 0.023 and σ Y1(�m) = 0.026 (for conve-
nience, we use half the difference between the reported upper and
lower 68 per cent confidence limits rather than propagating asym-
metric errorbars). Of course, this should not be interpreted as an
estimate of the impact of all systematic errors, only those tested by
the simulations. With this caveat duly noted, P(�θ < σ Y1) can be
calculated as the integral of the posteriors in the middle and lower
panels of Fig. 2 between the dashed lines, for θ = S8 and �m, re-
spectively. Ideally, one could also calculate e.g. P

(
�θ < 1

2 σY1

)
,

however, given our available simulation volume, we do have suffi-
cient statistical power to meaningfully constrain parameter biases
to this precision.

For the BCC simulations, we find P(�S8 < σ Y1) = 0.98 and
P(��m < σ Y1) = 1.00 (we report these probabilities to two decimal
places), indicating that we can be confident that systematic biases
in our inference of S8 and �m from the BCC simulations are less
than the DES Y1 1σ uncertainty for those parameters.

For the MICE simulations, we find P(�S8 < σ Y1) = 0.66 and
P(��m < σ Y1) = 0.57. Again, more simulation volume is required
to make strong statements about the sub-dominance (or not) of
systematic errors to statistical errors from the MICE simulations.
This does not make the analysis of the MICE simulations a pointless
exercise; we can comfort ourselves with the fact that we could
have uncovered large (i.e. larger than the DES Y1 1σ uncertainty)
systematic biases, and did not.

Table 2 summarizes our parameter bias results for both simulation
suites and all subsets of the datavector considered.

5.4 Photometric redshifts

Photometric redshift estimation is one of the major challenges for
extracting precise cosmological information from imaging surveys

(e.g. Schmidt et al. 2014). In this section, we test the effects of
photometric redshift biases on the inferred cosmological parameters
for the BCC simulation suite. For the fiducial analyses of real DES
Y1 data, BPZ was used to estimate the n(z)s of the source sample, as
described in Hoyle et al. (2017). These n(z) estimates were further
refined by comparison to two independent photo-z methods, and
shifts of the form ni(z) → ni(z + δzi) were applied to each redshift
bin i, with uncertainty in the δzi marginalized over as part of the
cosmological parameter estimation (with Gaussian priors of width
[0.016, 0.013, 0.011, 0.022]).

We do not implement the two independent photo-z methods used
to correct the BPZ n(z)s on these simulations (this would require
significantly expanding the scope of the simulations), but as an
idealised proxy, we do apply shifts δzi to the BPZ n(z) estimates
such that they have the correct mean redshift (see case (iii) below).

For the BCC simulations (we do not use photo-z estimates for the
source sample in MICE), we compare the recovered cosmological
parameters in the following cases:

(i) We use the true redshifts to construct the n(z)s for both lenses
and sources; this was our fiducial treatment in Section 5.3.

(ii) We use true redshifts to construct the n(z) for the lenses,
but BPZ estimates to construct the n(z) for the sources. For this
case, we marginalize over a shift δzi for each source redshift bin
i, with independent Gaussian priors with mean zero, and width
0.02 (this is same order as those used in DES Collaboration
et al. 2017)

(iii) The same as case (ii), but we first shift the BPZ n(z) estimates
such that they have the correct mean redshift.

(iv) The same as case (ii), but we now also use photometric
redshifts to construct the lens sample n(z)s.

Given the size of the DES Y1 area, there is very little variation
in the n(z)s between simulated realizations, therefore we can assess
the effect of using photometric redshift biases by comparing the
cosmological constraints inferred from the mean datavector across
all realizations when we use the true redshifts to construct the
theoretical prediction for the datavector, to when we use photometric
redshift estimates in the theoretical prediction. We use a covariance
matrix appropriate for a single DES Y1 realization in the likelihood
calculation, which naturally puts any differences in the contours in
the context of DES Y1 uncertainties.
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DES Y1: Validating inference on simulations 4625

Table 2. A summary of constraints on parameter biases inferred from both simulation suites. The ��m and �S8 provide the absolute bias in �m and S8 (and
68% confidence intervals) with respect to the truth input to the simulations. For comparison, the uncertainty on these parameters for the accompanying analysis
in DES Collaboration et al. (2017) is 0.026 and 0.023 respectively; statistically significant biases of this level would be a cause for concern.

Dataset ��m P(��m < σ Y1) �S8 P(�S8 < σ Y1)

BCC ξ± + w + γ t 0.0017 ± 0.0084 1.00 0.0106 ± 0.0058 0.97

BCC ξ± − 0.0125 ± 0.0120 0.84 0.0067 ± 0.0059 0.99

BCC w + γ t − 0.0010 ± 0.0085 1.00 0.0156 ± 0.0077 0.81

MICE ξ± + w + γ t 0.0191 ± 0.0217 0.57 0.0183 ± 0.0182 0.67

MICE ξ± 0.0198 ± 0.0434 0.39 0.0239 ± 0.0213 0.49

MICE w + γ t 0.0052 ± 0.0226 0.68 − 0.0024 ± 0.0262 0.61

Figure 4. The impact of using photometric redshift estimates. For all con-
tours, the datavector is the mean of all BCC realisations. Purple filled con-
tours use the true redshift distributions for both lens and source galaxies.
Note in this case galaxies are binned according to their photo-z, but the n(z)
for each redshift bin is estimated using true redshifts. The green unfilled
contours use source redshift distributions estimated using BPZ photo-zs,
while the orange unfilled contours additionally use the photometric redshift
estimates from the the REDMAGIC algorithm, zRM for the lenses. The black
dashed contours use BPZ to estimate the source n(z)s, shifted in redshift to
have the correct mean (see Section 5.4 for details).

Fig. 4 demonstrates that the inferred cosmological parameters do
change significantly when using photometric redshifts in the BCC
simulations. The green contour illustrates case (ii); in this case, S8

is significantly biased with respect to the fiducial result (the filled
purple contour) by 0.038, greater than the achieved 1σ uncertainty
for DES Y1. The dashed black contour shows case (iii), where the
BPZ n(z) estimates are first shifted to have the correct mean. The
result is improved, but the bias in S8 of 0.020 with respect to the
fiducial case is still non-negligible. Using photometric redshifts for
the lens n(z)s does not introduce significant parameter bias - the S8

bias for case (iv) differs from that for case (ii) by only 4 × 10−3. This
implies that the zRM photo-zs in BCC are comfortably performing
sufficiently well for DES Y1.

It appears then that marginalizing over δzi for the source redshift
bins with the above priors is an insufficiently flexible scheme to
account for biases in the BPZ n(z) estimates for the BCC simula-
tions. On the real DES data, the opposite conclusion was reached
in Hoyle et al. (2017), with BPZ performing sufficiently well in
comparison to a re-weighted COSMOS sample with high-precision
photo-zs (Laigle et al. 2016) and cross-correlation methods. Given
this result, it is likely that BPZ is performing worse on the BCC
simulations than the real DES data. This is demonstrated in Fig. 5,

Figure 5. Estimates of the bias in the mean redshift (z̄) and the bias in the
redshift standard deviation (σ (z)) reported by BPZ for each source redshift
bin. For the BCC simulations (red points) these biases can be computed
exactly, while for the real DES Y1 data (black points), these are estimated
from comparison with a re-weighted COSMOS sample with high-precision
redshift information (Hoyle et al. 2017). For the two highest source redshift
bins, we see much larger biases in both the mean redshift and the redshift
standard deviation for BCC than we do for the DES Y1 data. While biases in z̄

can be accounted for using the δzi parameterization described in Section 5.4,
biases in σ (z) are not accounted for by this parameterization.

where we show estimates of the bias in the mean redshift (z̄) and the
bias in the width (the standard deviation, σ (z)) of each source red-
shift bin. For the BCC n(z)’s, we can use true redshift information
to calculate these quantities exactly, while for the DES Y1 data,
these biases are estimated by comparison to the aforementioned
COSMOS sample. For the DES Y1 points, error bars indicate the
uncertainty of the COSMOS-based estimates of z̄ and σ (z), using
the methodology of and including all effects discussed in Hoyle
et al. (2017).

Particularly for the highest two redshift bins, for BCC we see
large biases in both the mean redshift, and the width of the redshift
distribution. While the impact of the former could be mitigated by
the δzi nuisance parameters, biases in the width of the n(z)s can not
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be. This is the likely explanation for why marginalizing over δzi did
not mitigate BPZ redshift biases sufficiently for BCC.

The conclusion that the BPZ performance is worse on BCC
than on the real DES data of course depends on the reliability of
the COSMOS-based photo-z validation, especially for the highest-
redshift bin where a clustering-based n(z) estimate was not available
as additional validation. Several potential sources of biases in the
n(z) estimation using the COSMOS photo-zs are investigated and
quantified in Hoyle et al. (2017); these contribute to the error bars
on the DES Y1 points in Fig. 5, which are still much smaller than
the differences apparent between DES Y1 and BCC. As discussed
in Hoyle et al. (2017), for the DES Y1 magnitude range (� 23.5),
n(z) biases due to errors in the COSMOS photo-zs of greater than a
few per cent seem very unlikely based on the results of Laigle et al.
(2016). We find it very unlikely therefore that biases at the level
we see for BPZ on BCC (e.g. 20 per cent in mean redshift for the
highest z bin) could be present for the BPZ and COSMOS estimates
on the DES Y1 data.

Potential reasons for the poor performance of BPZ will be ex-
plored further in DeRose et al. (2018). Particularly at high redshift,
there may be a mismatch between the BPZ templates and the galaxy
colours simulated in the BCC since the BPZ templates include a
redshift evolution correction based on higher redshift spectroscopic
data (see Hoyle et al. 2017) that is not present in the low-redshift
SDSS data used by ADDGALS (see Section 3.1.2). As discussed in
Section 4.2, we note also that our procedure for selecting the source
sample from the BCC was highly simplified compared to the pro-
cedure on the data. Even if the galaxy colours in the BCC matched
the real Universe perfectly, this difference in selection could pro-
duce a source sample in BCC on which BPZ performs differently
as compared to the real data.

We note here that generating mock galaxies with realistic joint
distributions of clustering properties, colours, and redshift down to
the magnitude limits, and in the redshift ranges required for DES,
is extremely challenging. Iterative improvements in empirical and
theoretical galaxy models with comparison to DES and other large
photometric and spectroscopic datasets will likely be required to
meet this challenge.

6 D ISCUSSION

Combined weak lensing and clustering analyses on Stage III galaxy
surveys are still in their infancy, but already present a significant
step forward for cosmological inference from these surveys (van
Uitert et al. 2017; DES Collaboration et al. 2017; Joudaki et al.
2018). Even in the absence of systematics, this multi-probe ap-
proach allows more cosmological information to be extracted, and
when uncertain contributions from systematic effects are included,
can greatly reduce the degradation in cosmological constraining
power they cause. However, such analyses rely on various theo-
retical assumptions, and assume that observational and astrophysi-
cal systematics can be treated accurately, making validation of the
methodology extremely important.

In this work, we have attempted to validate the methodology used
on DES Y1 data by performing a similar analysis of tailored survey
simulations. Simulations have of course been extensively used in
cosmology analyses of photometric data sets. Related recent cos-
mology analyses include Mandelbaum et al. (2013), who performed
a detailed study of the galaxy–matter cross-correlation in simula-
tions to validate their theoretical modeling. van Uitert et al. (2017)
presented a similar combined weak lensing and galaxy clustering
analysis on KiDS data to that considered here and tested aspects

of their analysis on tailored simulations. However, these did not
include a realistic lens sample to test the galaxy bias modeling.
In this work, we go further than previous analyses in attempting
to simulate both galaxy clustering and lensing observables (rather
than quantities that are not directly observable such as the galaxy–
matter correlation function), estimated from galaxy samples that
are selected using the same or at least approximate versions of the
galaxy selection process used on the real data. By using observable
quantities, we ensure that higher-order effects like magnification
and reduced shear are included, so we are implicitly testing the
impact of ignoring these effects in our theoretical modelling.

These simulations contain many of the complexities of real data:
spatially varying magnitude errors due to depth variations affect
galaxy selection, the statistical connection between galaxies and
matter is more complex than our simple theoretical models, and
photometric redshift algorithms have been implemented (albeit fur-
ther work on the galaxy colours is required to make this last aspect
more informative). Table 3 summarizes complexities present in real
data that are relevant to a galaxy clustering and weak lensing analy-
sis, and indicates whether they are included in the simulations used
in this work. For those that are included, our analysis of the simula-
tions constitutes a validation of their treatment in our cosmological
parameter estimation pipeline.

As indicated in Table 3, there are various potential systematic
effects in real data that are not included in the simulations used
here. For example, image simulations are likely required to test
the accuracy of photometry and shear estimation pipelines (e.g.
Bridle et al. 2009; Mandelbaum et al. 2014). In order to produce
image simulations with realistic distributions of galaxy properties
(including clustering), it will be desirable to propagate the type of
simulation used in this work to the image level (rather than just
the mock catalogues used here). Some progress on this has already
been made by Chang et al. (2015).

We also note that neither simulation suite used here includes
galaxy intrinsic alignments, which potentially contaminates the
shear correlation functions and the galaxy–galaxy lensing signal.
We believe including intrinsic alignments in future galaxy survey
simulations should be prioritized, as it is one of the major systemat-
ics faced by weak lensing analyses (Troxel & Ishak 2015; Joachimi
et al. 2015). Another primary systematic for cosmic shear analyses,
the effect of baryonic physics on the matter power spectrum (see
e.g. White 2004; Zhan & Knox 2004; Semboloni et al. 2011), is also
not included here. These effects, often termed astrophysical system-
atics, clearly depend on additional physics to that implemented in
the N-body simulations used here. Both of these effects are areas of
active investigation using hydrodynamic simulations (e.g. Chisari
et al. 2018, 2017).

The galaxy bias, especially on small scales, of course also de-
pends on the simulation implementation. Here again, hydrodynamic
simulations are arguably closer to a first-principles approach to
simulating galaxies than the empirical relations used in BCC and
MICE. However they have a much higher computational cost, and
much of the relevant physics still occurs on scales below the res-
olution limit of any current simulations that are large enough in
volume to be applicable to cosmological analyses. It is likely that
iterative comparison of the galaxy survey data such as the Dark
Energy Survey are providing, simulations which use empirical re-
lations to add galaxies like the ones used here, and hydrodynamic
simulations will be required to inform us of the true behavior of
galaxy bias. Nonetheless, we have shown that reasonable models
for how galaxies trace the density field, implemented in the BCC
and MICE simulations, show no strong evidence of bias in cosmo-
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Table 3. A list of phenomena relevant to the combined clustering and weak lensing analysis presented here that exist in real data. We indicate whether they
are included in the simulations used in this work, and thus whether our treatment of the effect is tested by the analysis of the simulations presented here.
‘Higher-order lensing effects’ refers to contributions to the weak lensing shear at higher than first order in the gravitational potential (see e.g. Krause & Hirata
2010) that are captured by full ray-tracing as in the BCC. ‘Beyond Limber angular statistics + RSD’ refers to the deviation of the angular power spectra in the
simulations from that predicted assuming the Limber approximation and ignoring redshift space distortions, as in our modelling. Although the BCC catalogues
do provide photo-z estimates, the differences between the performance of BPZ on the simulated and real data limited their usefulness (see Section 5.4) – the
‘(

√
)’ symbol in the ‘Photo-z bias’ row reflects this.

Real-data complexity Included in BCC Included in MICE

Photometry and shear estimation biases × ×
Higher-order lensing effects

√ ×
Intrinisc alignments × ×
Nonlinear galaxy bias

√ √

Beyond-Limber angular statistics + RSD
√ √

Magnification effect on number counts
√ √

Baryonic effects on the matter distribution × ×
Photo-z biases (

√
) ×

Spatially varying photometric noise
√ √

Non-Gaussian distributed datavectors
√ √

logical parameter inference, which should provide confidence in the
robustness of the cosmological parameter constraints presented in
the companion papers (DES Collaboration et al. 2017; Troxel et al.
2017).

Given the amount of simulation volume currently available for the
MICE simulations, we are unable to make a very definitive statement
about the size of systematic biases with relation to the DES Y1
parameter uncertainties. For the BCC simulations, on the other hand,
we do find convincing evidence that inferred parameter biases are
smaller than the DES Y1 1σ uncertainties. Updated versions of both
simulation suites that will be used for upcoming DES cosmology
analyses are already reasonably advanced in their development, and
will provide larger simulation volumes, as well as implementing
improved empirical relations between galaxy colours and clustering
properties.
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Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and
the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Labora-
tory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energéticas, Medioambi-
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APPENDI X: TWO-POI NT C ORRELATI ON
FUNCTI ON MEASUREMENTS

Figs A1–A4 show the two-point correlation function measurements
from the BCC simulations. Figs A5–A8 show two-point correlation
function measurements from the MICE simulations.
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Figure A1. Measurement of ξ+(θ ) in the BCC simulations. Dark orchid data points are the mean across all 18 simulations, while orange lines indicate
measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical prediction
assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.
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Figure A2. Measurement of ξ−(θ ) in the BCC simulations. Dark orchid data points are the mean across all 18 simulations, while orange lines indicate
measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical prediction
assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.
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Figure A3. Measurement of γ t(θ ) in the BCC simulations. Dark orchid data points are the mean across all 18 simulations, while orange lines indicate
measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical prediction
assuming the true cosmology, with the best-fit galaxy bias from the mean of all realizations. Grey-shaded regions are excluded from the fiducial analysis.

Figure A4. Measurement of w(θ ) in the BCC simulations. Dark orchid data points are the mean across all 18 simulations, while orange lines indicate
measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical prediction
assuming the true cosmology, with the best-fit galaxy bias from the mean of all realizations. Grey-shaded regions are excluded from the fiducial analysis.
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Figure A5. Measurement of ξ+(θ ) in the MICE simulations. Dark orchid data points are the mean across the two DES Y1 realizations, while orange lines
indicate measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical
prediction assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.
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DES Y1: Validating inference on simulations 4633

Figure A6. Measurement of ξ−(θ ) in the MICE simulations. Dark orchid data points are the mean across the two DES Y1 realizations, while orange lines
indicate measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical
prediction assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.
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Figure A7. Measurement of γ t(θ ) in the MICE simulations. Dark orchid data points are the mean across the two DES Y1 realizations, while orange lines
indicate measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical
prediction assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.

Figure A8. Measurement of w(θ ) in the MICE simulations. Dark orchid data points are the mean across the two DES Y1 realizations, while orange lines
indicate measurements from individual realizations. Errorbars indicate the expected uncertainty from a single DES Y1 realization. The line is the theoretical
prediction assuming the true cosmology. Grey-shaded regions are excluded from the fiducial analysis.
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