102 research outputs found

    Interaction Driven Quantum Hall Wedding cake-like Structures in Graphene Quantum Dots

    Get PDF
    Quantum-relativistic matter is ubiquitous in nature; however it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a table-top prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we provide a spatial visualization of the interplay between spatial and magnetic confinement in a circular graphene resonator. We directly observe the development of a multi-tiered "wedding cake"-like structure of concentric regions of compressible/incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can therefore yield insights into the behaviour of quantum-relativistic matter under extreme conditions

    Measuring medical students' professional competencies in a problem-based curriculum: A reliability study

    Get PDF
    Identification and assessment of professional competencies for medical students is challenging. We have recently developed an instrument for assessing the essential professional competencies for medical students in Problem-Based Learning (PBL) programs by PBL tutors. This study aims to evaluate the reliability and validity of professional competency scores of medical students using this instrument in PBL tutorials. Methods: Each group of seven to eight students in PBL tutorials (Year 2, n = 46) were assessed independently by two faculty members. Each tutor assessed students in his/her group every five weeks on four occasions. The instrument consists of ten items, which measure three main competency domains: interpersonal, cognitive and professional behavior. Each item is scored using a five-point Likert scale (1 = poor, 5 = exceptional). Reliability of professional competencies scores was calculated using G-theory with raters nested in occasions. Furthermore, criterion-related validity was measured by testing the correlations with students' scores in written examination. Results: The overall generalizability coefficient (G) of the professional competency scores was 0.80. Students' professional competencies scores (universe scores) accounted for 27% of the total variance across all score comparisons. The variance due to occasions accounted for 10%, while the student-occasion interaction was zero. The variance due to raters to occasions represented 8% of the total variance, and the remaining 55% of the variance was due to unexplained sources of error. The highest reliability measured was the interpersonal domain (G = 0.84) and the lowest reliability was the professional behavior domain (G = 0.76). Results from the decision (D) study suggested that an adequate dependability (G = 0.71) can be achieved by using one rater for five occasions. Furthermore, there was a positive correlation between the written examination scores and cognitive competencies scores (r = 0.46, P < 0.01), but not with the other two competency domains (interpersonal and professionalism). Conclusions: This study demonstrates that professional competency assessment scores of medical students in PBL tutorials have an acceptable reliability. Further studies for validating the instrument are required before using it for summative evaluation of students by PBL tutors.Scopu

    Interaction-driven quantum Hall wedding cake–like structures in graphene quantum dots

    Get PDF
    Quantum-relativistic matter is ubiquitous in nature; however, it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a tabletop prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we directly visualize the interplay between spatial and magnetic confinement in a circular graphene resonator as atomic-like shell states condense into Landau levels. We directly observe the development of a “wedding cake”–like structure of concentric regions of compressible-incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can, therefore, yield insights into the behavior of quantum-relativistic matter under extreme conditions.United States. National Science Foundation. STC Center for Integrated Quantum Materials (Award 1231319)United States. Army Research Office. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001

    Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat

    Get PDF
    The anatomical pathways between the hypothalamus and cell groups of the lower medulla that are involved in the neural control of endocrine pancreas activity were investigated. As part of this control system the descending pathways originating from lateral, dorsomedial and ventromedial hypothalamic nuclei towards the dorsal motor vagus and ambiguus nuclei, were studied by retrograde transport of horseradish peroxidase. Very small injections of the tracer, by means of the iontophoretic delivery method, were placed in the dorsal motor vagus, ambiguus and solitary tract nucleus as well as in the various nuclei of the medullary reticular formation. Subsequent retrograde labeling was studied in the hypothalamus and the brainstem. The appearance of considerable retrograde labeling in mesencephalic periventricular grey and rostral mesencephalic reticular formation indicated a possible role for these structures as intermediates in an indirect hypothalamo-medullary control circuitry. This led us to extend the peroxidase injections to these mesencephalic areas after which the hypothalamus was investigated for retrograde labeling. All data combined indicated the existence of three descending pathways, direct and indirect, between hypothalamus and the parasympathetic motor nuclei of the lower medulla.

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression.

    Get PDF
    Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein-Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial-mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast the initiation of EMT.This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT

    Imaging inter-valley coherent order in magic-angle twisted trilayer graphene

    Full text link
    Magic-angle twisted trilayer graphene (MATTG) exhibits a range of strongly correlated electronic phases that spontaneously break its underlying symmetries. The microscopic nature of these phases and their residual symmetries stands as a key outstanding puzzle whose resolution promises to shed light on the origin of superconductivity in twisted materials. Here we investigate correlated phases of MATTG using scanning tunneling microscopy and identify striking signatures of interaction-driven spatial symmetry breaking. In low-strain samples, over a filling range of about 2-3 electrons or holes per moir\'e unit cell, we observe atomic-scale reconstruction of the graphene lattice that accompanies a correlated gap in the tunneling spectrum. This short-scale restructuring appears as a Kekul\'e supercell -- implying spontaneous inter-valley coherence between electrons -- and persists in a wide range of magnetic fields and temperatures that coincide with the development of the gap. Large-scale maps covering several moir\'e unit cells further reveal a slow evolution of the Kekul\'e pattern, indicating that atomic-scale reconstruction coexists with translation symmetry breaking at the much longer moir\'e scale. We employ auto-correlation and Fourier analyses to extract the intrinsic periodicity of these phases and find that they are consistent with the theoretically proposed incommensurate Kekul\'e spiral order. Moreover, we find that the wavelength characterizing moir\'e-scale modulations monotonically decreases with hole doping away from half-filling of the bands and depends only weakly on the magnetic field. Our results provide essential insights into the nature of MATTG correlated phases in the presence of strain and imply that superconductivity emerges from an inter-valley coherent parent state.Comment: the main text, extended data figures, and S

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Full text link
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z~2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with 1-sigma detections of emission lines to f > 2.5x10^{-18} erg/s/cm^2, means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^{9.5} M_sun) than previously studied z~2 emission-line galaxies. Despite their lower mass, the galaxies have OIII/Hb ratios which are very similar to previously studied z~2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the OIII emission line is more spatially concentrated than the Hb emission line with 98.1 confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(OIII)/L(0.5-10 keV) ratio is intermediate between typical z~0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked OIII spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.Comment: ApJ accepted. 8 pages, 6 figure

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    Get PDF
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei

    Association of sickle cell trait with β-cell dysfunction and physical activity in adults living with and without HIV in Tanzania.

    Get PDF
    This study aimed to investigate sickle cell trait (SCT) associations with physical activity, markers of insulin secretion and resistance, and glucose among people living with HIV infection (PLWH), both antiretroviral therapy (ART) naive and experienced, and HIV-uninfected adults. This was a cross-sectional study conducted in Mwanza, Northwestern Tanzania. We used data of 668 participants attained from two sub-studies of CICADA study. Mean age was 40 (SD 11.5) years, 402 (61.7%) were females and 157 (24.1%) had SCT. PLWH were 422 (64.7%), of these, 80 (18.9%) were on ART. People with SCT had higher risk of having an isolated β-cell dysfunction compared to those without SCT (RRR = 1.82, CI: 1.10, 3.01, p = 0.02). People with SCT but without HIV infection had lower average acceleration on the trunk longitudinal axis (ACCx) and higher level of self-reported physical activity. 30 min oral glucose tolerance test among PLWH on ART was higher in those with SCT compared to those without SCT. People with SCT are at higher risk of having β-cell dysfunction and those with SCT on ART are at more risk of developing diabetes. Future studies to investigate the interaction between SCT and HIV/ART on risk of diabetes should be considered
    • …
    corecore