Quantum-relativistic matter is ubiquitous in nature; however it is
notoriously difficult to probe. The ease with which external electric and
magnetic fields can be introduced in graphene opens a door to creating a
table-top prototype of strongly confined relativistic matter. Here, through a
detailed spectroscopic mapping, we provide a spatial visualization of the
interplay between spatial and magnetic confinement in a circular graphene
resonator. We directly observe the development of a multi-tiered "wedding
cake"-like structure of concentric regions of compressible/incompressible
quantum Hall states, a signature of electron interactions in the system.
Solid-state experiments can therefore yield insights into the behaviour of
quantum-relativistic matter under extreme conditions