121 research outputs found

    Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Crystals

    Get PDF
    Metal Organic Frameworks (MOFs) represent a class of nanoporous crystalline materials with far reaching potential in gas storage, catalysis, and medical devices. We investigated the effects of synthesis process parameters on production of MOF-5 from terephthalic acid and zinc nitrate in diethylformamide. Under favorable synthesis conditions, we systematically mapped a solid formation diagram in terms of time and temperature for both stirred and unstirred conditions. The synthesis of MOF-5 has been previously reported as a straightforward reaction progressing from precursor compounds in solution directly to the final MOF-5 solid phase product. However, we show that the solid phase formation process is far more complex, invariably transferring through metastable intermediate crystalline phases before the final MOF-5 phase is reached, providing new insights into the formation pathways of MOFs. We also identify process parameters suitable for scale-up and continuous manufacturing of high purity MOF-5

    Anion-polarisation--directed short-range-order in antiperovskite Li2_2FeSO

    Get PDF
    Short-range ordering in cation-disordered cathodes can have a significant effect on their electrochemical properties. Here, we characterise the cation short-range order in the antiperovskite cathode material Li2_2FeSO, using density functional theory, Monte Carlo simulations, and synchrotron X-ray pair-distribution-function data. We predict partial short-range cation-ordering, characterised by favourable OLi4_4Fe2_2 oxygen coordination with a preference for polar cis-OLi4_4Fe2_2 over non-polar trans-OLi4_4Fe2_2 configurations. This preference for polar cation configurations produces long-range disorder, in agreement with experimental data. The predicted short-range-order preference contrasts with that for a simple point-charge model, which instead predicts preferential trans-OLi4_4Fe2_2 oxygen coordination and corresponding long-range crystallographic order. The absence of long-range order in Li2_2FeSO can therefore be attributed to the relative stability of cis-OLi4_4Fe2_2 and other non-OLi4_4Fe2_2 oxygen-coordination motifs. We show that this effect is associated with the polarisation of oxide and sulfide anions in polar coordination environments, which stabilises these polar short-range cation orderings. We propose similar anion-polarisation-directed short-range-ordering may be present in other heterocationic materials that contain cations with different formal charges. Our analysis also illustrates the limitations of using simple point-charge models to predict the structure of cation-disordered materials, where other factors, such as anion polarisation, may play a critical role in directing both short- and long-range structural correlations

    Consistency and flexibility in solving spatial tasks: different horses show different cognitive styles

    Get PDF
    Individual animals vary in their behaviour and reactions to novel situations. These differences may extend to differences in cognition among individuals. We tested twenty-six horses for their ability to detour around symmetric and asymmetric obstacles. All of the animals were able to get around the barrier to reach a food target, but varied in their approach. Some horses moved slowly but were more accurate in choosing the shortest way. Other horses acted quickly, consistently detoured in the same direction, and did not reliably choose the shortest way. The remaining horses shifted from a faster, directionally consistent response with the symmetric barrier, to a slower but more accurate response with the asymmetric barrier. The asymmetric barrier induced a reduction in heart rate variability, suggesting that this is a more demanding task. The different approaches used to solve the asymmetric task may reflect distinct cognitive styles in horses, which vary among individuals, and could be linked to different personality traits. Understanding equine behaviour and cognition can inform horse welfare and management

    Insights into surface chemistry down to nanoscale: an accessible colour hyperspectral imaging approach for scanning electron microscopy

    Get PDF
    Chemical imaging (CI) is the spatial identification of molecular chemical composition and is critical to characterising the (in-) homogeneity of functional material surfaces. Nanoscale CI on bulk functional material surfaces is a longstanding challenge in materials science and is addressed here. We demonstrate the feasibility of surface sensitive CI in the scanning electron microscope (SEM) using colour enriched secondary electron hyperspectral imaging (CSEHI). CSEHI is a new concept in the SEM, where secondary electron emissions in up to three energy ranges are assigned to RGB (red, green, blue) image colour channels. The energy ranges are applied to a hyperspectral image volume which is collected in as little as 50 s. The energy ranges can be defined manually or automatically. Manual application requires additional information from the user as first explained and demonstrated for a lithium metal anode (LMA) material, followed by manual CSEHI for a range of materials from art history to zoology. We introduce automated CSEHI, eliminating the need for additional user information, by finding energy ranges using a non-negative matrix factorization (NNMF) based method. Automated CSEHI is evaluated threefold: (1) benchmarking to manual CSEHI on LMA; (2) tracking controlled changes to LMA surfaces; (3) comparing automated CSEHI and manual CI results published in the past to reveal nanostructures in peacock feather and spider silk. Based on the evaluation, CSEHI is well placed to differentiate/track several lithium compounds formed through a solution reaction mechanism on a LMA surface (eg. lithium carbonate, lithium hydroxide and lithium nitride). CSEHI was used to provide insights into the surface chemical distribution on the surface of samples from art history (mineral phases) to zoology (di-sulphide bridge localisation) that are hidden from existing surface analysis techniques. Hence, the CSEHI approach has the potential to impact the way materials are analysed for scientific and industrial purposes

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture

    2020 roadmap on solid-state batteries

    Get PDF
    Li-ion batteries have revolutionized the portable electronics industry and empowered the electric vehicle (EV) revolution. Unfortunately, traditional Li-ion chemistry is approaching its physicochemical limit. The demand for higher density (longer range), high power (fast charging), and safer EVs has recently created a resurgence of interest in solid state batteries (SSB). Historically, research has focused on improving the ionic conductivity of solid electrolytes, yet ceramic solids now deliver sufficient ionic conductivity. The barriers lie within the interfaces between the electrolyte and the two electrodes, in the mechanical properties throughout the device, and in processing scalability. In 2017 the Faraday Institution, the UK's independent institute for electrochemical energy storage research, launched the SOLBAT (solid-state lithium metal anode battery) project, aimed at understanding the fundamental science underpinning the problems of SSBs, and recognising that the paucity of such understanding is the major barrier to progress. The purpose of this Roadmap is to present an overview of the fundamental challenges impeding the development of SSBs, the advances in science and technology necessary to understand the underlying science, and the multidisciplinary approach being taken by SOLBAT researchers in facing these challenges. It is our hope that this Roadmap will guide academia, industry, and funding agencies towards the further development of these batteries in the future

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven by increasing need for economic energy storage in the electric vehicle market. Electrode manufacture is the first main step in production and in an industry dominated by slurry casting, much of the manufacturing process is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding value to the electrode manufacturing value chain. Overcome the current barriers in the electrode manufacturing requires advances in material innovation, manufacturing technology, in-line process metrology and data analytics to improve cell performance, quality, safety and process sustainability. In this roadmap we present where fundamental research can impact advances in each stage of the electrode manufacturing process from materials synthesis to electrode calendering. We also highlight the role of new process technology such as dry processing and advanced electrode design supported through electrode level, physics-based modelling. To compliment this, the progresses in data driven models of full manufacturing processes is reviewed. For all the processes we describe, there is a growing need process metrology, not only to aid fundamental understanding but also to enable true feedback control of the manufacturing process. It is our hope this roadmap will contribute to this rapidly growing space and provide guidance and inspiration to academia and industry

    2021 roadmap for sodium-ion batteries

    Get PDF
    Abstract: Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid–electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology
    • 

    corecore