19 research outputs found

    The application of omics in ruminant production: a review in the tropical and sub-tropical animal production context

    Get PDF
    The demand for animal products (e.g. dairy and beef) in tropical regions is expected to increase in parallel with the public demand for sustainable practices, due to factors such as population growth and climate change. The necessity to increase animal production output must be achieved with better management and production technologies. For this to happen, novel research methodologies, animal selection and postgenomic tools play a pivotal role. Indeed, improving breeder selection programs, the quality of meat and dairy products as well as animal health will contribute to higher sustainability and productivity. This would surely benefit regions where resource quality and quantity are increasingly unstable, and research is still very incipient, which is the case of many regions in the tropics. The purpose of this review is to demonstrate how omics-based approaches play a major role in animal science, particularly concerning ruminant production systems and research associated to the tropics and developing countriesinfo:eu-repo/semantics/acceptedVersio

    Quantitative distribution of flavan-3-ols, procyanidins, flavonols, flavanone and salicylic acid in five varieties of organic winter dormant Salix spp. by LC-MS/MS

    Get PDF
    Willow trees (Salix spp.) exhibit remarkable genetic and phenotypic diversity, yielding a broad spectrum of bioactive compounds, notably valuable phenolic compounds such as condensed tannins (phenolic polymers), flavonoids, salicylic glucosides, and phenolic compounds. These enhance the economic value of willow crops and make them suitable for circular bioeconomy. Phenolic compounds known for their diverse applications as antioxidants, antimicrobial agents, pharmaceuticals, nutraceuticals and antiseptics and more, find a natural source in willow. This study aimed to elucidate the composition of 12 flavonoids and salicylic acid in different segments of five organic winter dormant willow species (S. daphnoides, S. fragilis, S. dasyclados, S. viminalis, and S. dasyclados x viminalis) using quantitative analysis and providing valuable insights into their high-value phenolic compounds. Separation into buds, wood and bark segments allowed for a precise characterization of the location of certain phenolic compounds and quantification using LC-MS/MS techniques. LC-MS/MS is an analytical technique known for its increased sensitivity and chromatographic precision. Among the findings, catechin emerged as the predominant flavan-3-ol in all Salix species, with the highest concentration in the buds of Salix viminalis (7.26 mg/g DM). Naringenin exhibited species-specific variations, with S. dasyclados and S. viminalis recording the highest levels. Salicylic acid concentrations peaked in S. dasyclados (5.38 mg/g DM) and S. daphnoides (4.43 mg/g DM), particularly within the bark. When evaluating other individual flavonoids and total polyphenol content (TPC), disparities between buds, bark, and wood became evident, with wood consistently displaying the lowest content. Notably, the higher concentration of polyphenolic compounds in willow bark can be attributed to its susceptibility to external threats and its role as a robust defense mechanism against pathogens and herbivores. This study underscores the significance of diverse willow species as a source of high-value phenolic compounds, distributed differentially across plant parts and species. This knowledge holds promise for their potential applications in the circular bioeconomy

    Comprehensive quantification of flavonoids and salicylic acid representative of Salix spp. using microLiquid Chromatography-Triple Quadrupole Mass Spectrometry: the importance of drying procedures and extraction solvent when performing classical solid-liquid extraction

    No full text
    Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoids and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoids among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness

    Comprehensive quantification of flavonoids and salicylic acid representative of Salix spp. using microLiquid Chromatography-Triple Quadrupole Mass Spectrometry: the importance of drying procedures and extraction solvent when performing classical solid-liquid extraction

    Get PDF
    Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoids and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoids among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness

    Quantitative distribution of flavan-3-ols, procyanidins, flavonols, flavanone and salicylic acid in five varieties of organic winter dormant Salix spp. by LC-MS/MS

    No full text
    Willow trees (Salix spp.) exhibit remarkable genetic and phenotypic diversity, yielding a broad spectrum of bioactive compounds, notably valuable phenolic compounds such as condensed tannins (phenolic polymers), flavonoids, salicylic glucosides, and phenolic compounds. These enhance the economic value of willow crops and make them suitable for circular bioeconomy. Phenolic compounds known for their diverse applications as antioxidants, antimicrobial agents, pharmaceuticals, nutraceuticals and antiseptics and more, find a natural source in willow. This study aimed to elucidate the composition of 12 flavonoids and salicylic acid in different segments of five organic winter dormant willow species (S. daphnoides, S. fragilis, S. dasyclados, S. viminalis, and S. dasyclados x viminalis) using quantitative analysis and providing valuable insights into their high-value phenolic compounds. Separation into buds, wood and bark segments allowed for a precise characterization of the location of certain phenolic compounds and quantification using LC-MS/MS techniques. LC-MS/MS is an analytical technique known for its increased sensitivity and chromatographic precision. Among the findings, catechin emerged as the predominant flavan-3-ol in all Salix species, with the highest concentration in the buds of Salix viminalis (7.26 mg/g DM). Naringenin exhibited species-specific variations, with S. dasyclados and S. viminalis recording the highest levels. Salicylic acid concentrations peaked in S. dasyclados (5.38 mg/g DM) and S. daphnoides (4.43 mg/g DM), particularly within the bark. When evaluating other individual flavonoids and total polyphenol content (TPC), disparities between buds, bark, and wood became evident, with wood consistently displaying the lowest content. Notably, the higher concentration of polyphenolic compounds in willow bark can be attributed to its susceptibility to external threats and its role as a robust defense mechanism against pathogens and herbivores. This study underscores the significance of diverse willow species as a source of high-value phenolic compounds, distributed differentially across plant parts and species. This knowledge holds promise for their potential applications in the circular bioeconomy

    Extract of polyphenols such as natural tannins and flavonoids from willow and hemp as organic feed additive for methane reduction in dairy cows

    No full text
    The primary idea is to develop a new feed additive as an important climate initiative for organic cattle producers to reduce the enteric methane production in dairy cows with 30%. This is expected to be achieved by adding plant extracts from organically grown willow and hemp, plants with a high content of polyphenols such as tannins and flavonoids that inhibit methanogenic microorganisms

    Obesity Development and Signs of Metabolic Abnormalities in Young Göttingen Minipigs Consuming Energy Dense Diets Varying in Carbohydrate Quality

    No full text
    Consumption of fructose has been associated with a higher risk of developing obesity and metabolic syndrome (MetS). The aim of this study was to examine the long-term effects of fructose compared to starch from high-amylose maize starch (HiMaize) at ad libitum feeding in a juvenile Göttingen Minipig model with 20% of the diet provided as fructose as a high-risk diet (HR, n = 15) and 20% as HiMaize as a lower-risk control diet (LR, n = 15). The intake of metabolizable energy was on average similar (p = 0.11) among diets despite increased levels of the satiety hormone PYY measured in plasma (p = 0.0005) of the LR pigs. However, after over 20 weeks of ad libitum feeding, no difference between diets was observed in daily weight gain (p = 0.103), and a difference in BW was observed only at the end of the experiment. The ad libitum feeding promoted an obese phenotype over time in both groups with increased plasma levels of glucose (p = 0.005), fructosamine (p < 0.001), insulin (p = 0.03), and HOMA-IR (p = 0.02), whereas the clinical markers of dyslipidemia were unaffected. When compared to the LR diet, fructose did not accelerate the progression of MetS associated parameters and largely failed to change markers that indicate a stimulated de novo lipogenesis

    Methane reduction by quercetin, tannic and salicylic acids: influence of molecular structures on methane formation and fermentation in vitro

    Get PDF
    Plant secondary metabolites (PSMs) can potentially reduce ruminal methane formation. However, related to differences in their molecular structures, it is not yet clear what causes an antimethanogenic effect. In an in vitro system simulating rumen fermentation, we investigated the impact of eight compounds with distinct chemical characteristics (gallic and salicylic acids, tannic acid, catechin, epicatechin, quercetin, rutin, and salicin) when added to a basal feed (maize silage) at a concentration of 12% of the feed dry matter. After 48 h of incubation in buffered rumen fluid, methane production was significantly lowered by quercetin (43%), tannic acid (39%) and salicylic acid (34%) compared to the control (maize silage alone) and without changes in total volatile fatty acid production during fermentation. No other PSM reduced methane formation as compared to control but induced significant differences on total volatile fatty acid production. The observed differences were related to lipophilicity, the presence of double bond and carbonyl group, sugar moieties, and polymerization of the compounds. Our results indicate the importance of distinct molecular structures of PSMs and chemical characteristics for methane lowering properties and volatile fatty acid formation. Further systematic screening studies to establish the structure–function relationship between PSMs and methane reduction are warranted
    corecore