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The demand for animal products (e.g. dairy and beef) in tropical regions is expected to 

increase in parallel with the public demand for sustainable practices, due to factors 

such as population growth and climate change. The necessity to increase animal 

production output must be achieved with better management and production 

technologies. For this to happen, novel research methodologies, animal selection and 

postgenomic tools play a pivotal role. Indeed, improving breeder selection programs, 

the quality of meat and dairy products as well as animal health will contribute to 

higher sustainability and productivity. This would surely benefit regions where 

resource quality and quantity are increasingly unstable, and research is still very 

incipient, which is the case of many regions in the tropics. The purpose of this review 

is to demonstrate how omics-based approaches play a major role in animal science, 

particularly concerning ruminant production systems and research associated to the 

tropics and developing countries. 

Significance 

Environmental conditions in the tropics make livestock production harder, compared 

to temperate regions. Due to global warming, the sustainability of livestock 

production will become increasingly problematic. The use of novel omics 

technologies could generate useful information to understand adaptation mechanisms 

of resilient breeds and/or species. The application of omics to tropical animal 

production is still residual in the currently available literature. With this review, we 

aim to summarize the most notable results in the field whilst encouraging further 

research to deal with the future challenges that animal production in the tropics will 

need to face. 
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1. Introduction 

Animal production in tropical countries plays a pivotal role in providing valuable 

protein for local populations. In the coming years, animal production will face two 

major challenges: a rising human population and an increasing need to reduce 

greenhouse gas emissions [1]. Thus, the demand for animal products will increase 

along with the need to reduce emissions, such as methane, that ruminant production is 

responsible for, particularly beef and dairy intensive production. Simultaneously, 

problems such as heat stress (HS) will become more frequent, providing additional 

challenges that must be dealt with. Animal production in the tropics is already 

difficult compared to temperate regions due conditions such as higher HS and water 

scarcity. When combined with the predicted environmental changes, these conditions 
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make research and technical based approaches in different fields essential to improve 

productivity and sustainability. The physiological adaptation to external factors and 

the description of suitable biomarkers to predict meat quality traits and animal welfare 

are good examples of such subjects that need further investigation in this context. 

These issues have caught the attention of the scientific community [1,2]. 

The use of novel omics technologies is becoming increasingly common in the context 

of animal production. Genomics, transcriptomics, proteomics and metabolomics, in 

addition to other omics subjects such as phosphoproteomics, peptidomics or 

lipidomics, have all been used in the field of animal production. The use of these 

omics technologies allows the study of animal metabolism when subjected to a certain 

factor. This allows the study of the impact of environmental conditions (e.g. 

temperature, humidity), nutrition, gender and welfare, on the physiology of farm 

animals at the molecular level. For example, genomics allows the identification of 

candidate genes related to a desirable trait in reproduction programmes, such as 

fertility. The postgenomic tools then allow the identification of differentially 

expressed genes and differentially abundant proteins and metabolites between two 

conditions of a certain factor. Furthermore, the integration of these technologies 

provides a full screening of the animal, tissue or cell metabolism, from genotype to 

phenotype. Omics-derived biomarkers, for example, allow traceability and quality 

monitoring throughout the pork production chain [3]. Moreover, using proteomics, the 

quality of dairy and meat products can be analysed by identifying the proteins behind 

desirable traits such as milk protein composition and meat tenderness [4]. Several 

omics applications in animal science have been extensively reviewed in recent years 

[[4], [5], [6], [7], [8], [9], [10]]. However, animal production integrated with omics 

approaches have been given less focus in a tropical and sub-tropical animal science 

context. Such focus is very specific and considerably different from the ones found in 

temperate regions in developed countries. Literature is plentiful of examples (Table 

1). They include for instance heat stress in large and small ruminants, seasonal weight 

loss in small ruminants under extensive systems or the disadvantages of harsh 

environments on product quality. These are some of the subjects that are yet to be 

reviewed and studied to a similar extent to other subjects of temperate climates. 

Analysing these subjects from a molecular biology-driven perspective, allows the 

generation of information that would greatly benefit regions where productivity is 
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generally low. For example, the study of breeds more resistant to HS or weight loss 

and their physiology, could help improve the productivity of a region that largely uses 

susceptible breeds. Other closely related areas such as epigenetics/epigenomics will 

not be considered in this study. The use of epigenomics, or the study of the 

epigenome, allows the identification of gene expression modifications that do not 

result from DNA mutation, which modify a phenotype. The epigenome is the set of 

modifications such as DNA methylation that might transmit epigenetic information 

such as non-coding RNA. DNA methylation for example is a reaction catalysed by 

DNA methyltransferases. Methylation of promotor regions inhibits gene expression, 

whereas hypomethylation increases gene expression [11], which could be a causative 

factor for different gene expression of the same gene in different tissues. Liu et al. 

[12] found that DNA methylation regulated EEF1D gene expression, who is positively 

related to milk production traits such as milk yield, in dairy cows. Extensive reviews 

on the subject are well documented [11,13,14] and readers are directed to them for 

further references. 

Table 1. Studies in currently available literature that study topics of relevance for animal 

science in the tropics and sub-tropics, using omics technology. 

Area of 

animal 

science 

Omics field 

Genomics Transcriptomics Proteomics Metabolomics 

Meat 

quality 

in Bos 
indicus 

[[24], [25], [26], [27], [28]] [33,34,35,36,37,38,39,40] [56,57,58,54] [60,61,62,63] 

Heat 

stress in 

dairy 

cows 

– – [70,67,75,76,77,78] [69,74] 

Heat 

stress in 

dairy 

goats 

– [84,86,87] – [89,91] 

Seasonal 

weight 

loss in 

small 

ruminants 

– – [101,102,103,104,109,110] [105,108] 

Colostrum 

nutrition 
– [127] [117,118,119,121,122,123] [124,125,126] 
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Area of 

animal 

science 

Omics field 

Genomics Transcriptomics Proteomics Metabolomics 

Rumen 

microbiota 
[129,145,146,151] [160] [166,167,168,169] [161,170,171,172,173] 

Tick 

Borne 

diseases 

and 

helminths 

[185,186,187,188,191,198,199] [178,180,184,197,202,203] [176,177,182,183,195,201] [200] 

This review aims to describe subjects of importance for animal production in the 

tropics and sub-tropics, studied using omics technologies (Fig. 1). Overall, we aim to 

demonstrate its relevance in answering complex questions on how animal production 

in the tropics and sub-tropics could benefit from these endeavours. We also reviewed 

two case studies of tick-borne diseases and gastrointestinal parasites. Albeit not 

strictly being within the scope of this review. However, because animal health 

significantly influences animal productions, they were also included. 
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Fig. 1. Systems biology network applied to animal science experiments. 

2. Omics and meat quality traits in Bos indicus 

Bos indicus breeds (Zebu cattle) are extensively used for beef production in tropical 

and sub-tropical environments, due to their thermotolerance and resistance to parasites 

[15]. Zebu breeds descend from South Asian ancestors and are characterized by a 

cervo-thoraxic hump and long wide ears [16]. They are the predominant breed type in 

countries with important beef cattle populations such as Australia or Brazil, where the 

dominant breed is the Nellore cattle. Although breed differences in meat quality traits 

have been well documented [[17], [18], [19], [20]], Zebu cattle have a particular 

reputation for producing carcass and meat of low-quality grades when compared 

to Bos taurus [[21], [22], [23]]. For this reason, animal geneticists are being led to 

conduct considerable efforts to increase the knowledge of the genetic architecture and 

biological pathways that control the variation of these production traits. However, the 

application of traditional selection methods to these traits is expensive and requires 

animal slaughtering. Fig. 2 shows some of the most relevant results obtained using 

omics to study meat quality. 
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Fig. 2. Overview of omics results found for meat quality of Zebu cattle. 

The development of high-density bovine genotyping arrays [24] and the use of 

genome-wide association studies (GWAS), have allowed the identification of genomic 

regions associated with meat quality phenotypes for Bos indicus animals, suggesting 

candidate genes for fine mapping. Cesar et al. [25] reported 23 genomic regions (1-

Mb windows) in Nellore steers (n = 386) that explained ≥ 1% of the genetic variance 

for intramuscular fat (IMF) deposition and fatty acids (FAs) composition using 

449,363 single nucleotide polymorphisms (SNPs). Ten genomic regions were 

furthermore reported for monounsaturated fatty acids (MUFA) and nine genomic 

regions were described for a group of polyunsaturated fatty acids (PUFA). This 

information benefits selection programs to which meat fatty acid composition is a 

factor to take into consideration in breeding cattle. These authors commented that 

many of these regions were not previously detected in other cattle breeds. Another 

study with FAs composition using 470,007 SNPs in Nellore bulls (n = 1,556) found 

115 windows that explained more than 1 % of the additive genetic variance for the 22 

studied FAs [26]. Nineteen genomic regions distributed in 16 different chromosomes 

were associated with MUFAs, 40 genomic regions with PUFAs, and 21 genomic 

regions accounted for the group of omega-3, omega-6, and the n-6:n-3 ratio. Both 

authors [25,26] concluded that the identification of the genomic regions and their 

respective candidate genes improved the genetic basis of the FAs profile of the 

Nellore cattle, contributing to increase meat quality and human health. 

Other studies were also conducted to relate gene expression with meat tenderness. 

Tizioto et al. [27], studying the association among 651,259 SNPs and meat quality 

traits in Nellore steers (n = 425), found that the shear force measured at 24 h, 7 and 14 

days postmortem was primarily influenced by quantitative trait loci (QTL) of small 

effect. The largest effects explained were from 0.10% (shear force at 7 days 

postmortem) to 0.19% (shear force at 14 days postmortem) of the additive genetic 

variance. A total of 56 genes were detected as candidates for meat tenderness, which 

were related to the regulation of transcription, membrane region and metal-binding. 

Meanwhile, Magalhães et al. [28] identified genomic regions that explained 3.89% 

and 3.80% of the additive genetic variance for marbling (n = 1,633) and meat 

tenderness (n = 1,630) in Nellore cattle. One window that explained 1.12% of the 
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additive genetic variance for marbling was the third largest effect window (0.67%) for 

meat tenderness, suggesting that the SNPs associated to the candidate genes exert a 

pleiotropic effect on both traits. The authors reported that the genes that were found 

associated with marbling do not correspond to those described in others GWAS in Bos 

taurus. Regarding meat tenderness, only the solute carrier family 27-member 2 

(SLC27A2) gene had already been associated with meat tenderness in cattle. 

These articles summarized that two variations have occurred when we evaluate the 

effects of SNP markers for the same meat quality trait. First, there is a variation in 

effects within the same breed of Bos indicus cattle, which can be attributed to the 

differences in SNP allele frequencies, linkage disequilibrium between SNPs and 

causal variants, coverage of the SNP chip for the breed, analysis method, and 

population size. Second, and probably the most important, distinct genomic regions 

are segregating between Bos taurus and Bos indicus cattle [29]. In this sense, and by 

reducing the cost of genome sequencing, fine mapping of specific regions [30] or 

whole-genome sequencing [31], new causal mutations could be included in 

customized low-density chips to enable large-scale use for genetic evaluation for meat 

quality. 

High throughput sequencing technologies have been widely used to study gene 

expression of the genome and characterize the development of phenotypes [32]. 

Transcriptome studies in the Bos indicus breeds have focused on reproductive traits 

[33,34], feed efficiency [35,36], mineral concentration [37,38], and meat quality 

[39,40]. Accordingly, Cesar et al. [41] studied the gene expression of the skeletal 

muscle in Nellore cattle with divergent IMF deposition. The authors identified retinoic 

acid and inflammatory cytokine pathways, as well as insulin-like growth factor 2 

(IGF2) and ankyrin repeat domain 26 (ANKRD26) genes as important regulators of 

the IMF content variation. A similar study was conducted to identify hub genes based 

on the gene co-expression network analysis obtained from differentially expressed 

genes associated with IMF content in Nellore cattle [42]. According to the authors, 

phosphodiesterase 4D (PDE4D), kelch-like family member 30 (KLHL30), and 

interleukin 1 receptor accessory protein (IL1RAP) were highly interconnected with 

nodes in a network, demonstrating to be functionally significant on the lipid 

metabolism in the Nellore cattle. The identification of these genes and their functions 

provides information that not only serves to complement other findings that confirm 
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gene expression (e.g. proteomics) but complement useful information towards the 

identification of desirable genes to produce meat with high IMF content. 

Recently, the FAs profile in beef has received considerable attention because of its 

implication in human health, besides its role in the tenderness and juiciness of cooked 

meat [43]. Among the studied FAs, a larger number of differentially expressed genes 

in skeletal muscle was observed for the oleic acid content variation in zebu cattle 

[44,45], and most of these genes were related to oxidative phosphorylation, ribosome, 

and proteasome biological processes [23]. Moreover, Cesar et al. [46] promoted the 

integration of high throughput DNA genotyping and RNA-sequencing data. The 

authors identified three transcription factors (EGR4, USF1, and RUNX1T1) within the 

eQTLs (expression quantitative trait loci) hotspots regions with known functions in 

lipid metabolism. The identification of these genes and their relation with healthier 

fatty acids ultimately contributes to improve meat quality through the selection of 

breeds that have increased expression of genes that contribute towards increased 

concentration of bennecial fatty acids, mainly PUFA. 

Transcriptomics has been used to characterize gene expression changes related to 

meat tenderness. Genes related to ubiquitin metabolism, transport of molecules, and 

collagen production were identified as involved in meat tenderness in Nellore bulls 

[39]. In a recent study using Nellore steers, Gonçalves et al. [40] found apoptosis, 

calcium transport, and proteolysis pathways associated with shear force measured at 

14 days of aging. These authors identified two microRNAs (bta-mir-133a-2 and bta-

mi-22) and three genes (myoglobin, enolase 3, and carbonic anhydrase 3) as potential 

regulator transcripts of pathways impacting tenderness by the gene co-expression 

network analysis. A similar study was conducted to analyze the relationship among 

genes expressed in skeletal muscle of Nellore steers with meat quality traits and 

mineral concentration, but using weighted correlation network analysis [47]. The 

modules containing co-expressed genes associated with two or more minerals, meat 

tenderness, and IMF were enriched to AMPK (AMP-activated protein kinase) and 

mTOR (mammalian Target of Rapamycin) signaling pathways, and ubiquitin-

mediated proteolysis. 

The role of microRNAs (miRNAs), small noncoding RNAs, in meat tenderness was 

also investigated in zebu cattle by Kappeler et al. [48]. In this study, two miRNAs 

(bta-mir-182 and bta-mir-183) were upregulated in animals with higher tenderness at 
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14 days of aging. In contrast, one miRNA (bta-mir-338) was downregulated in the 

same group. Calpain (CAPN5), calpastatin (CAST), and caspases (CASP2 and CASP9) 

were identified as target genes of these miRNAs, suggesting their involvement in the 

regulation of the apoptosis processes and meat tenderization. Since these enzymes 

contribute for a significant role in muscle to meat proteolysis and its transformation 

into meat, knowing their regulation mechanisms is critical to maximize the output of 

high quality products, which greatly impacts profitability throughout the production 

chain. 

In addition, transcriptome differences have also been achieved for carcass traits. For 

instance, Silva-Vignato et al. [49] conducted a study of the skeletal muscle 

transcriptome of Nellore cattle using RNA-sequencing. The authors found 101 

differentially expressed genes for the ribeye area (REA) and 18 for backfat thickness 

(BFT). The results included genes involved in MAPK (mitogen-activated protein 

kinase) signaling and endocytosis pathways regulating the REA trait; and the 

biological processes related to adipogenesis and muscle growth controlling the BFT 

trait. Indeed, energy and lipid metabolism pathways, as well as inflammation and 

immune response pathways in skeletal muscle were found to modulate the BFT trait 

in Nellore cattle [50,51]. 

Among the omics tools, proteomics has been extensively used in meat science in the 

last two decades because proteins and enzymes have essential roles in muscle to meat 

transformation [[52], [53], [54]]. Changes in Longissimus thoracis muscle protein 

profile related to ultimate pH, and consequently, to meat quality traits were observed 

in a study with Nellore cattle [55]. In this context, the alpha-actinin-2 (ACTN2), 

histone H2AJ (H2AFJ), UTP-glucose-1-phosphate uridylyltransferase (UGP2) and 

voltage-dependent anion-selective channel protein 3 (VDAC3) proteins that presented 

differential abundance between the ultimate pH groups were also correlated with 

some meat quality attributes, such as colour and tenderness. These proteins could be 

interesting candidates for validation of biomarkers that indicate the desirable traits 

mentioned. 

Carvalho et al. [56], comparing extreme groups for meat tenderness (shear force 

measured at 7 days of aging), identified heat shock protein beta 1 (HSP27), and heat 

shock 70 Da protein 1A (HSP70-1), as well as structural proteins 

(ACTA1, MLC1/MLC3, MLC2, TPM1) as potential biomarkers for meat tenderness in 
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Nellore bulls. Comparative analysis between Bos taurus (Angus) and Bos 

indicus (Nellore) cattle using a phosphoproteomic approach showed that differences 

in meat quality between the two breeds could be attributed to proteins involved in 

contraction and muscle organization, cell flux of calcium and apoptosis. Authors 

highlighted proteins phosphoglucomutase-1 (PGM1), triosephosphate isomerase 

(TPI1), and 4-3-3 ε protein (YWHAE) that showed differences in phosphorylation 

[18]. In addition, a metalloproteins study of the Nellore cattle muscle, identified 

piruvate kinase (PKM) and albumin (ALB) as calcium-dependent proteins related to 

differences in meat tenderness [57]. 

In an in-depth study, proteomics was used as a tool to understand changes in 

the Longissimus thoracis muscle protein profile of the Nellore bovine with contrasting 

genotypes for calpain-1 (CAPN4751) and calpastatin (UOGCAST) molecular markers 

[58]. The results indicated differentially abundant proteins for the effect of interaction 

among molecular markers, including myosin (MYL2, MYLPF, and MYH6) isoforms, 

actin (ACTA1), troponin-T (TNNT3), heat shock proteins (HSP27), and energy 

metabolism proteins (TPI1, CKM, ENO3, UQCRC1, TRIM72) [54]. 

Differences in IMF deposition in zebu cattle have been evaluated by an innovative 

proteomic approach. The authors that performed this study used a Nellore 

cattle Longissimus dorsi muscle transcriptome database to identify the proteins dataset 

[59]. Furthermore, the integration of protein, mRNA, and miRNAs data was 

performed to explain intramuscular fat deposition. The results revealed 164 

differentially abundant proteins between the divergent groups for IMF deposition, 17 

genes differentially expressed at the mRNA and protein levels, and two genes whose 

miRNAs could explain the inconsistent expression of mRNA and protein levels. 

Proteins involved in glycolysis metabolism, actin cytoskeleton signaling, cell-cell 

adherent junctions and pathways for MAPK and insulin were associated with IMF 

content variation. 

Metabolomics is being increasingly used in livestock research [9]. However, there is a 

surprising gap in studies evaluating meat quality traits in cattle. Connolly et al. [60], 

using proton nuclear magnetic resonance (1H NMR) spectroscopy, tested the 

relationship among blood metabolites and carcass and production traits at different 

feeding days in Wagyu crossed with other breeds, including Brahman cattle (Bos 

indicus). The analyses revealed that genotypes have a significant influence at the 
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concentration of sixteen from the 35 metabolites identified. The metabolites 3-

hydroxybutyrate, acetate, and propionate were the most promising metabolites to 

predict marbling. 

In Nellore cattle, the supplementation of the animal diet with yerba mate grass (Ilex 

paraguariensis) extract improved meat tenderness and oxidative stability due to the 

increased levels of inosine monophosphate, creatine, and carnosine in fresh meat [61]. 

Meat metabolite profiles were compared between Nellore and crossbred 

Angus x Nellore cattle [62]. A set of 15 metabolites differed between the studied 

breeds. These included acetate, carnosine, glutamate, carnitine, creatinine, and 

isoleucine, which were correlated with beef sensory properties (overall liking, 

juiciness, tenderness, and flavor) in the other study conducted using the same animals 

by the same research group [63]. 

Despite the technological innovations and significant advances in omics sciences for 

meat quality in Bos indicus cattle, one of the limiting factors is that all the predicted 

genetic polymorphisms, genes, transcripts, proteins, and metabolic pathways have 

been identified in Bos taurus database. It should be of utmost priority to establish a 

dedicated Bos indicus database in order to obtain accurate gene/protein identifications. 

This would provide higher confidence in the results obtained. Moreover, it would 

validate these results to design practical applications in the improvement of breeder 

selection programmes, meat quality assessment, among others. 

3. Heat stress in dairy cows: an omics approach 

Heat stress is the main abiotic stressor for high-yield dairy cows (e.g. Holstein-

Friesian), as they are extremely sensitive to hot environments due to their increased 

metabolic rate [64]. In the near future, climate change is predicted to increase the 

prevalence and intensity of HS periods [65]. Therefore, dairy cattle will become more 

susceptible to suffer from HS. Despite advances in cooling systems during summer, 

HS continues to be an important confounder of performance in dairy cows, with 

significant cost consequences for the dairy industry [66] in both tropical and 

temperate regions. Dairy cattle experience HS when they are exposed to 

environmental conditions above their thermo-neutral zone. Generally, a thermal heat 

index (THI), a measure that includes temperature and humidity, above 72 is 
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considered as a HS condition for dairy cows [67]. In addition to THI, thermal 

radiation is a main HS factor in warm environments [68]. In many countries 

worldwide, a high THI coupled with elevated thermal radiation are maintained for 

weeks during the summer season causing a chronic HS on cows. It is extremely 

important to distinguish between the effects of an acute HS (hours to days) and 

chronic HS (weeks to months, as in the summer season), since the physiological 

responses to chronic stress are adaptive and related to a prolonged exposition to the 

stressor. Therefore, we will clearly state the experimental condition of each referred 

study. This section will focus on studies that assessed the effects of HS on dairy cows 

as reflected by omics techniques (metabolomics and proteomics) of biological fluids 

and tissues of dairy cows under HS (Fig. 3). 
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2. Download : Download full-size image 

Fig. 3. Effect of different types of heat stress (HS): chronic (blue) of acute (yellow), over 

dairy cows’ metabolism. 

3.1. Metabolomics and proteomics of plasma, milk and follicular fluids in heat-

stressed dairy cows 
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The effects of chronic HS on the metabolomics of plasma in dairy cows was examined 

by Tian et al. [69], that used integrated 1H NMR and liquid chromatography-mass 

spectrometry techniques. In their study, the non-HS group were mid lactation Holstein 

cows during the spring season and the HS cows were sampled during the summer 

season (THI 68 to 80). The authors reported 41 metabolites that had differential 

abundance between plasma of HS and non-HS cows, from them 13 metabolites, 

including trimethylamine, glucose, lactate, betaine, creatine, pyruvate, acetoacetate, 

acetone, β-hydroxybutyrate, C16 sphinganine, lysophosphatidylcholine (18:0), 

phosphatidylcholine (16:0/14:0), and arachidonic acid, had high sensitivity and 

specificity in HS cows. These metabolites are involved either in carbohydrate, amino 

acid, lipid, or gut microbiome-derived metabolism and they are likely to be considered 

as potential biomarkers of HS dairy cows, indicating that HS affects different 

metabolic pathways in lactating dairy cows. However, these results would benefit 

from studies seeking the validation of the previously mentioned metabolites as HS-

indicating biomarkers. A good way to complement these results and take sturdier 

conclusions is studying this issue using proteomics. 

Proteomic analysis of plasma was also used to assess the effects of chronic HS on 

dairy cows, using isobaric tags for relative and absolute quantification (iTRAQ). In 

this work, plasma was sampled from mid lactation Holstein cows that were either HS 

during summer (THI 80-88) or non-HS during spring (THI 50). Overall, 1472 plasma 

proteins were identified, from which 85 were differentially abundant in HS cows [70]. 

Several factors in the complement system (including C1, C3, C5, C6, C7, C8, and C9, 

and complement factor B and factor H) were found to be downregulated in plasma of 

HS cows compared to those from non-HS cows [70]. In another study that used two-

dimensional electrophoresis (2-DE) combined with mass spectrometry (MS), the 

effects of chronic HS on plasma proteomics were also examined in mid lactation 

Holstein cows. The sampling of plasma was defined at two time points: at the 

beginning of a moderate HS in summer (average THI = 80); and after 23 days of HS, 

compared to plasma that was collected during spring (THI 50-60) [67]. It was found 

that seven proteins were differentially abundant at the beginning of HS compared to 

spring, and three proteins were less abundant after 23 days of HS compared to the 

beginning of HS [71]. Among them, a decrease in the abundance of transthyretin, 

which is known to be reduced by inflammation [72], was found in HS cows [71]. In 
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addition, increased levels of the pro-inflammatory cytokines tumour necrosis factor 

(TNF-α) and interleukin-6 (IL-6) were found in plasma of the heat stressed cows [71]. 

Taken together with the previous findings, proteomic analyses of plasma demonstrate 

that chronic HS in summer may increase subacute inflammation and may also impair 

immune function in lactating dairy cows [73]. 

To examine the effects of chronic heat stress on milk metabolomics in mid lactation 

dairy cows, milk was sampled in summer (HS; THI 68-80) or spring (THI 50-55) 

[74]. A total of 53 metabolites were different in milk of HS cows, involved in 

carbohydrate, amino acid, lipid, and gut microbiome-derived metabolism. These 

altered pathways were similar to those found by metabolomics analysis of plasma in 

HS cows [69]. Indeed, significant correlations between the levels of lactate, pyruvate, 

creatine, acetone, β-hydroxybutyrate, trimethylamine, oleic acid, linoleic acid, 

lysophosphatidylcholine 16:0, and phosphatidylcholine 42:2 were found between 

plasma and milk of HS cows. This may indicate that these metabolites in milk 

represent the metabolomics alterations in blood during HS. More studies investigating 

the effects of HS on milk metabolomics are needed in order to fully describe and 

validate biomarkers of HS in milk. The use of these biomarkers could be useful in 

assessing management strategies for mitigation of HS on dairy farms. 

Effects of acute HS on the proteome of ovarian follicular fluids was examined 

recently by Rispoli et al. [75]. In that study, Holstein cows were either maintained at 

thermo-neutral conditions (THI = ~67) or exposed to acute HS for ~12 hours (THI = 

71 to 86). Dominant follicle collection was conducted, and the follicular fluid 

proteome was evaluated by quantitative tandem mass spectrometry (nano LC-

MS/MS) [75]. Four proteins were found to be upregulated in the follicular fluids of 

acute-HS cows (kininogen-2, serotransferrin, serglycin and syndecan), whereas 

numerous cytokeratins, myosin 18B, histidine-rich glycoprotein, alpha-2-

macroglobulin, cathespin B and pleiotrophin were downregulated in acute-HS cows 

[75]. These changes in the proteome of follicular fluids under acute heat stress may 

have an impact on the competence of the periovulatory follicle, supporting the well 

described detrimental effects of acute HS on the reproductive system in dairy cows. 

3.2. Proteomics of liver and adipose tissues in heat-stressed cows 
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The effects of chronic HS during the dry period on the liver proteome in Holstein 

dairy cows was examined by Skibiel et al. [76]. These authors found differential 

abundance of 75 out of 3,270 proteins in liver samples collected in postpartum cows 

that were either housed with cooling devices or not (HS cows) during the dry period. 

Some of the most affected pathways were related to oxidative phosphorylation, 

mitochondrial dysfunction, farnesoid X receptor/retinoid X receptor (FXR/RXR) 

activation, and the methylmalonyl pathway [76]. This indicates that alleviating HS by 

cooling cows during the dry period likely improved ATP production, reduced 

oxidative stress, and prevented excessive accumulation of hepatic triglycerides and 

cholesterol. In another study, Ma et al [77] examined the effects of short-term acute 

HS using iTRAQ proteomics. The study comprised two experimental periods (9 days 

in climatic chamber and 30 days on thermoneutrality) with two groups of multiparous 

Holstein cows: acute-HS (32-36°C) and thermal-neutral (20°C) cows. This study 

showed changes in the liver protein abundance. Main regulated pathways were 

involved in oxidative phosphorylation and antigen processing and presentation 

pathways [77]. These studies indicate that HS affects the liver proteome by altering 

oxidative phosphorylation. However, the differences between experiments regarding 

the duration of the HS (acute vs. chronic) and in the lactation stage of the cows 

(transition vs. mid lactation) difficult further interpretation. 

The effects of chronic HS during summer on the proteome of adipose tissues in late 

gestation Holstein cows was investigated by using intensity based, label-free, 

quantitative shotgun proteomics (nano-LC–MS/MS) of subcutaneous adipose tissues 

of prepartum cows [78]. In that study, 107 out of 1495 proteins were differentially 

abundant in the adipose tissues of HS late gestation cows compared to late pregnant 

cows in winter, and the top canonical pathways enriched were Nrf2-mediated 

oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR 

activation [78]. Concerning the enrichment of the Nrf2-mediated oxidative stress 

response in adipose tissue from HS cows, the transcription factor Nrf2 is one of the 

key antioxidant regulators in the body, responding to oxidative stress by activating 

antioxidant genes [79]. These findings suggest that the regulatory adaptation to 

chronic HS and increased oxidative stress during summer is done in parallel with 

changes in the adipose tissue proteome in late pregnant cows. After validation, these 

proteins may serve as biomarkers of HS in adipose tissues. 
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In conclusion, several studies in recent years have evaluated the effects of acute and 

chronic HS on the metabolome and the proteome of different biological fluids (i.e. 

plasma, milk and follicular fluids) and tissues (i.e. liver and adipose tissues) of dairy 

cows. These studies highlight the ability of omics techniques to add valuable 

information on metabolites and proteins that are affected in dairy cattle during HS. 

Additional studies utilizing these high throughput methods are needed to have a broad 

omics database that may be used to develop new approaches to alleviate the effects of 

HS on dairy cows. 

4. Omics in the context of heat stress: dairy goats as a model 

As mentioned before, HS negatively affects the productivity, health, and welfare of 

dairy animals [80,81]. Despite advances in cooling systems and the implementation of 

several strategies, HS constitutes a significant cost for the dairy industry [66]. 

Compared to cows, dairy sheep and goats are less sensitive to HS. Furthermore, goats 

are considered more tolerant to high ambient temperature than sheep due to the fact 

that goats have lower metabolic rate and higher water-conservation capacity [82]. 

Nevertheless, significant milk yield losses and milk quality impairment have been 

reported in HS dairy goats [83,84] and sheep [85]. 

With regard to the application of omics in HS small dairy ruminants, only a few 

studies have been carried out. Herein we will present results on the omics of blood, 

milk, and urine of dairy goats. Omics can shed more light on the physiological 

mechanisms that occur in animals when exposed to HS, which helps in the 

establishment of effective strategies to alleviate its negative effects. 

4.1. Heat stress and milk synthesis 

Dairy animals produce less milk with lower contents of fat and protein under HS 

conditions [83,86]. By means of omics we were able to demonstrate that HS impairs 

cellular and molecular processes in mammary cells. Salama et al. [86] tested RNA-seq 

of milk cells collected from goats under HS (30 to 37°C) and thermal-neutral (TN; 15 

to 20°C) conditions. Heat stress changes the expression of 699 genes in milk cells. 

Some of the downregulated genes are related to milk fat (ACACA, FASN, SCD, 

BTN1A1, and XDH) and protein (CSN1S1, CSN1S2, CSN3, and LALBA) synthesis. 
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Furthermore, BCL2L1 (anti-apoptotic), and AKT1 (cell survival) genes are 

downregulated by HS, whereas BAX (apoptotic) gene is upregulated by HS. Taken 

together, the negative effects of HS on milk production might be explained by 

inhibiting mammary synthetic capacity as well as by increasing mammary cell death. 

In addition, cathepsin genes (CTSB, CTSD, CTSS, and CTSZ) are upregulated, which 

would result in greater casein degradation in milk produced from HS goats, which 

could explain the altered milk coagulation properties during cheese-making [80]. 

Recently, Salama et al. [87] reported lower phosphorylation level of 4E binding 

protein 1 (inhibitor of milk protein synthesis) in mammary cells under HS conditions 

(42°C), which would diminish translation initiation and reduce milk protein synthesis. 

Additionally, HS results in the upregulation of several microRNAs related to cell 

growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative 

stress (miR-141 and miR-200a). Interestingly, supplementation of HS mammary cells 

with methionine or arginine reverses most of the effects of HS occurring at the mRNA 

level. Both amino acids upregulate genes related to transcription and translation, 

insulin signalling, amino acid transport, and cell proliferation. The positive responses 

with methionine and arginine raise the possibility that supplementation with these 

amino acids might have a positive effect on mammary metabolism under HS 

conditions. 

4.2. Heat stress and intestinal cell integrity 

Heat stress has been shown to alter jejunal tight junction proteins in dairy cows, 

suggesting an impaired intestinal barrier function [88]. It is well known that a weak 

intestinal barrier allows for the paracellular transport of endotoxins, which results in 

the activation of the innate immune system and systemic inflammation. In fact, Koch 

et al. [88] showed that HS induces infiltration of myeloic origin and macrophage-like 

phenotype cells into the mucosa and submucosa of the jejunum as an immune 

response. In dairy goats, urine metabolomics revealed that HS increases the secretion 

of gut-derived uremic toxins or mammalian-microbial metabolites such as 

phenylacetate, phenylacetylglycine, phenylglyoxylate and trimethylamine N-oxide 

[89]. These findings indicate that these toxins might leak through the gastrointestinal 

epithelium to the blood stream and excreted into urine in HS goats. Identifying these 
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toxins in the urine of animals could be an interesting way of monitoring HS in small 

dairy ruminants and limit or anticipate consequences. 

4.3. Heat stress and the immune functions 

Besides the negative impact on milk production, HS impairs the immune system. 

Contreras-Jodar et al. [84] evaluated blood transcriptomics in dairy goats exposed to 

HS or TN conditions for 5 weeks. Compared to TN goats, chronic HS for 5 weeks 

resulted in 143 differentially expressed genes (55 upregulated and 88 downregulated). 

The functional gene analyses revealed that many biological pathways are 

downregulated by HS. These downregulated biological pathways are related to 

immune cell proliferation and migration (i.e. leukocyte transendothelial migration, 

cell adhesion molecules, and hematopoietic cell lineage), lipid metabolism (i.e. 

adipocyte and PPAR signalling), and tissue repair (i.e. arginine and proline 

metabolism and phagosome). On the other hand, HS upregulates pathways involved in 

immune cell death (i.e. pyrimidine metabolism, purine metabolism, cytochrome P450, 

and RNA transport). Overall, results from blood transcriptomics indicate that HS 

compromises both innate and adaptive immune responses in dairy goats, which would 

make HS goats more prone to infection. 

Regarding the mammary gland during HS, available data indicates that HS might 

compromise the mammary immune status. Thompson et al. [90] reported that cows 

without cooling during the dry period have higher incidence of mastitis in the next 

lactation. However, limited information is available on the changes in the mammary 

gland metabolome during an infection under controlled HS conditions. In a recent 

work, Salama et al. [91] used metabolomics to compare milk from healthy goats and 

goats challenged with an intramammary administration of lipopolysaccharide (LPS), 

cell wall components from gram-negative bacteria which are commonly used to 

mimic mastitis caused by this type of bacteria [92,93]. Metabolomics of milk 

produced from TN and HS with and without LPS administration in the udder revealed 

different putative inflammation markers that include choline, phosphocholine, N-

acetylcarbohydrates, L-lactate and ß-hydroxybutyrate. However, the importance of 

these markers varied between TN and HS indicating different mammary immune 

response. 
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As shown in Fig. 4, the use of omics techniques has demonstrated that HS impacts 

dairy goats at different levels. The immune system is negatively affected due to 

decreased haematopoiesis and leukocyte diapedesis. In addition, HS results in the 

disruption of lipid metabolism of immune cells, which would affect their 

functionality. Using urine metabolomics, various markers of leaky gut are detected, 

and these markers are related to the over-excretion of gut-derived toxic compounds 

generated by the harmful gastrointestinal microbiota. At the level of mammary gland, 

HS results in significant changes in the transcriptomic profile that include but not 

limited to the downregulation of milk fat and protein synthesis genes, and the 

upregulation of genes related to proteolysis and cell death. Furthermore, milk 

metabolomics showed that the inflammatory response to simulated infection is 

delayed by HS, decresing the ability to combat pathogens. . These factors demonstrate 

how omics can greatly benefit animal science, specifically in the tropical and sub-

tropical contexts where HS is one of the most pressing problems. Because HS occurs 

in varying intensities, knowing how the animals respond physiologically is of 

paramount importance. This information allows the characterization of tolerant and 

susceptible breeds, which would lead the producers to reduce costs related to animal 

health and improve productivity. Such an approach, of studying adapted breeds, has 

been carried out for other topics such as seasonal weight loss. 
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Fig. 4. Application of different omics tools (transcriptomics and metabolomics) to 

evaluate the impact of heat stress on dairy goats. 

5. Seasonal weight loss in small ruminants: an omics 

approach 
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Seasonal weight loss (SWL) is one of the most pressing issues in animal production in 

the tropics and the Mediterranean. Indeed, in these regions long dry seasons lead to 

poor pasture availability, both from a quantitative and qualitative perspectives, 

ultimately leading to SWL, that in turn has negative significant effects on animal 

productivity and health, as we have demonstrated for instance in Southern Africa [94] 

and the Canary Islands (Spain) [95]. To counter SWL, farmers may either supplement 

their animals, which is something difficult to conduct in remote regions, or they may 

choose to use breeds that are naturally adapted to such constraint. The use of omics, 

particularly proteomics, to study how small ruminants cope with SWL has been the 

focus of research over the last 20 years. We have been focusing on two major lines: 

meat producing sheep and dairy goats (Fig. 5). 
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Fig. 5. Summary of results from various omics approaches performed in Australia and the 

Canary Islands (Spain) to study seasonal weight loss (SWL) in small ruminants 

5.1. Sheep production studies in Australia 
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The Damara is a fat-tailed breed from Southern Africa that is considered naturally 

adapted to SWL [96]. The breed has been imported to Australia where it has been 

used in extensive production systems in semi-arid regions. We have characterized the 

growth and carcass traits of Damara lambs in comparison to that of Merino and 

Dorper lambs [97,98] under control and restricted growth conditions. The analysis 

also included a fatty acid profiling of the fat tailed Damara breed that noticed for the 

first time the accumulation in Damara tissues of branched chained FAs [99], a unique 

feature among ovine breeds. A detailed fatty acid profiling of the muscle tissues in the 

three breeds [100] was also conducted and results revealed several differences 

between Damaras and the other two breeds, namely a higher concentration of PUFA, 

which can be related to being a fat-tailed breed. Even in restricted feeding conditions, 

this breed revealed the highest levels compared to Merino and Dorper sheep 

respectively, of linoleic acid (+31% and +28%), linolenic acid (+97% and +51%), 

eicosapentaenoic acid (EPA) (+65% and +37%), docosapentanenoic acid (DPA) 

(+31% Merino) and docosahexaenoic acid (DHA) (+63% and +77%). EPA, DPA and 

DHA are three omega-3 FAs, with described beneficial characteristics. Overall results 

suggest that Damara rams have a unique lipid metabolism. Later, we have used 

proteomics to study muscle metabolism and tolerance to SWL. We started with a 2DE 

approach [101] that lead to the establishment of the first putative markers of tolerance 

to SWL in the ovine muscle: Desmin, Troponin T, Phosphoglucomutase and the 

Histidine Triad nucleotide-binding protein 1. At a later stage, we have also conducted 

an approach using label-free proteomics [102] that led to further markers of tolerance 

to SWL in the ovine muscle. In total, authors identified 668 proteins of the sheep 

proteome, one of the most complete characterizations of the ovine skeletal muscle 

profile to date. Authors demonstrated that additional proteins are affected by restricted 

nutritional conditions: ferritin heavy chain; immunoglobulin V lambda chain; 

transgelin; fatty acid synthase; glutathione S-transferase A2; dihydrodiol 

dehydrogenase 3-like. More recently, we have also used proteomics to study the 

mechanisms of adaptation to SWL at the level of the hepatic metabolism. Again, we 

have used two approaches: one gel based focusing on the mitochondrial proteome 

[103] and one label-free focusing on the whole tissue [104]. The first led to the 

identification of a total of 50 proteins with seven changing significantly in abundance. 

Specific abundance patterns of corticosteroid and inflammatory response-associated 
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proteins such as annexin and glutamate dehydrogenase suggested that the Damara has 

an unusual inflammation response when subjected to SWL in addition to its unique 

metabolism. All significant proteins warrant further study; Annexin in particular 

shows promise as a potentially useful biomarker. The second approach confirmed that 

the Damara has adapted to nutritional stress by mobilizing stored FAs within adipose 

tissue and converting them to energy more efficiently than the Merino. The latter had 

an overabundance pattern primarily directed to protein synthesis pathways. Several 

proteins were furthermore identified and validated and can be used as a basis for 

marker selection towards tolerance to nutritional stress. We have also used NMR-

spectroscopy metabolomics [105] to study the metabolic changes in the liver and 

muscle in these three breeds. Interestingly, the Dorper restricted group showed few 

changes in both tissues, suggesting higher tolerance to nutritional scarcity. The 

Merinos exhibited more differences between treatment groups. Major differences 

were related to fat and protein mobilization, and antioxidant activity. Between the 

Damara groups, the main differences were observed in amino acid composition in 

muscle and in energy-related pathways in the liver. Following this work, we focused 

exclusively on the amino acid profiles of muscle and liver of these lambs [106]. 

Damara lambs have higher capacity to mobilize muscle amino acids, particularly 

branch-chain amino acids, compared to other breeds during weight loss. Integration of 

omics results and with other data (e.g. amino acid profiles) on the same animals 

support the hypothesis that, Dorper and Damara breeds are more tolerant to SWL 

conditions and thus, more suitable breeds for harsh environmental (semi-arid) 

conditions. 

5.2. Dairy goat production studies in the Canary Islands 

We have also used omics to study the adaptation to SWL in dairy goats from the 

Canary Islands (Spain). This time, authors contrasted two breeds with different levels 

of adaptation to SWL: the Palmera (susceptible) and the Majorera (tolerant), at the 

level of the mammary gland secretory tissue. Authors started by studying production 

traits of both breeds [95] and later studied the blood biochemistry results [107]. 

Results pointed out to the existence of significant differences in creatinine, urea, free 

FAs, cholesterol, IGF-1 and T3 due to undernutrition. Furthermore, a principal 
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component analysis (PCA) analysis revealed that animals submitted to undernutrition 

could be distinguished from the control groups, with the formation of three separate 

clusters (Palmera individuals after 22 days of undernutrition; Majorera individuals 

after 22 days of undernutrition and animals assigned to control conditions), 

highlighting different responses of the two breeds to undernutrition. We later used 

NMR-spectroscopy metabolomics [108] to study the differences between breeds. This 

comparison included milk in addition to the mammary gland secretory tissue. 

Profiling analysis has led to the identification of 46 metabolites in the aqueous extract 

of the mammary gland. Lactose, glutamate, glycine and lactate were found to be the 

most abundant. Analysis of milk serum allowed the identification of 50 metabolites, 

the most abundant being lactose, citrate and creatine. Significant differences were 

observed, in mammary gland biopsies and milk serum, between control and restricted-

fed groups in both breeds, albeit with no differences between the breeds. Variations 

seem to be related to metabolism adaptation to the low-energy diet and are indicative 

of breed-specific microflora. Milk serum showed more metabolites varying between 

control and restricted groups, than the mammary gland. The Majorera breed also 

showed more variations than the Palmera breed in milk samples, which could be an 

indication of a prompt adaptation to SWL by the Majorera breed. The study was 

completed with a label free [109] and a mitochondrial [110] proteomics analysis. The 

first enabled the identification of over 1000 proteins, of which 96 showed differential 

expression between two of the groups within studied comparisons. Majorera breed 

showed higher expression of immune system related proteins. In contrast, Palmera 

breed showed higher expression of proteins related to apoptosis. Results indicate that 

the two goat breeds have a distinct metabolism reaction to SWL, and that proteins 

related to the immune system and apoptosis such as cadherin-13, collagen alpha-1, 

nidogen-2, clusterin and protein s100-A8 could be considered putative candidates as 

markers of tolerance to SWL. The second approach further led to the identification of 

different proteins of relevance to SWL tolerance. These included NADH-ubiquinone 

oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (upregulated in the 

Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 

(upregulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, 

mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase 

(downregulated in the Majorera breed) as a consequence of weight loss. 
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These above-mentioned results undoubtedly show the prominence of omics 

approaches and Systems Biology in the establishment and the discovery of markers of 

tolerance to SWL, overall contributing to bypass SWL-derived problems in the 

framework of animal production systems in the tropics and the Mediterranean. 

Similarly, these approaches can also be used to study other a vast array of subjects 

within the animal science field, such as susceptibility to a disease and HS, as 

previously mentioned. 

6. Omics and colostrum nutrition 

Colostrum, the first secretion of the mammary gland postpartum, is the first source of 

nutrients (e.g. fat, lactose, vitamins, and minerals) for newborn mammals [111]. 

Colostrum is different from mature milk as it has higher protein and fat content. The 

higher protein content is mostly associated with increased immunoglobulin (Ig) 

content. In ungulates, Igs are not effectively transferred through the placenta during 

gestation. Therefore, colostrum is the main source of Igs to these animal species at 

birth. The early provision of colostrum Igs to the neonate decreases the risk of disease 

until its own immune system develops [112]. Therefore, the relation between 

colostrum and newborn survival has been exhaustively characterized in many 

livestock species such as cows, sheep, goats and pigs [[113], [114], [115], [116]]. 

Additionally, colostrum contains a complex mixture of proteins that actively 

participate in the protection of the neonate against pathogens and other postpartum 

environmental challenges [4]. Because of the wide range of protein concentrations 

present in colostrum, the identification of the whole colostrum proteome is complex. 

Over the last years, increased sensitivity and accessibility of several omics 

technologies (i.e. proteomics, transcriptomics and metabolomics) have allowed 

important advances in the field of livestock science. In this area, omics technologies 

have contributed to increase the understanding of the different physiological and 

biological processes regarding colostrogenesis and the importance of colostrum in 

newborn ungulates. Advanced and more sensitive proteomics approaches have 

provided crucial information about proteins present in colostrum from goats and 

sheep, especially those defined as low abundance proteins [117,118]. Differences in 

the colostrum proteome of both species suggest that the use of colostrum replacer or 
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colostrum from other species may not ensure a correct passive immune transfer to the 

offspring. Furthermore, these studies also showed that not only the blood Igs 

concentrations are increased in newborn lambs after colostrum feeding, but also 

several other immune proteins (i.e. fibrinogen, serum amyloid A, apolipoprotein A-

IV, among others). Similar studies about the differences between colostrum and milk 

proteomes have been performed also in dairy cows [[119], [120], [121]] and sows 

[122,123]. 

Metabolomics have also provided novel information about the differences between 

colostrum and milk as well as the physiological changes in newborn livestock species 

caused by colostrum intake. As described by Curtasu et al. [124], metabolites 

involved in the metabolism and transport of FAs such as L-acetylcarnitine and 2-

metylbutyroylcarnitine, or metabolites such as glycerophosphocholine and choline are 

highly concentrated in colostrum compared to milk. In a similar study performed in 

dairy cows, Qi et al. [125] showed increased concentrations of leucine, cattle, 

glycocholic acid, acetoacetic acid, and uridine in colostrum compared to milk. 

However, these authors also described decreased concentrations of several metabolites 

including glutamate, ornithine, uric acid, stearidonic acid and citric acid in colostrum 

compared to milk. Most of these differences were related to processes such as the 

aminoacyl-tRNA biosynthesis, alanine, aspartate, glutamate, and butanoate 

metabolism, the citrate cycle, and the histidine metabolic pathway. These findings 

were in agreement with those from Zhao et al. [126] who observed increased 

concentrations of blood metabolites such as choline, tyrosine, glutamate, 

phenylalanine, valine and glutamate in calves fed with colostrum compared to those 

fed with milk after birth. 

Transcriptomics studies have been also performed to complete the whole picture 

about colostrum characterization and its effect on newborn livestock species. Morrin 

et al. [127] studied the modulation capacity of bovine cow colostrum on human 

intestinal epithelial cells during increased commensal colonisation. These authors 

observed that the epithelial cells treated with cow colostrum had increased 

glycosylation activity which in turn may facilitate the adherence of different bacteria 

such bifidobacteria. Although this study was performed in in vitro conditions on 

human epithelial cells, similar results can be expected to occur in dairy calves after 

colostrum feeding. 
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Besides the above-mentioned omics technologies have increased enormously the 

knowledge about colostrum and its impact of animal health status, more studies will 

be necessary to obtain deeper and clearer overview of the diverse processes that take 

place during colostrogenesis, colostrum secretion, intestinal colostrum absorption, 

and, finally, on the newborn immune system development. The continuous 

development of new and more sensitive proteomics, metabolomics and 

transcriptomics techniques will allow the identification of very low abundant 

components in tissues such as the mammary gland, the placenta or the intestine; and 

in fluids such as colostrum, milk or blood plasma. It is a matter of time until these 

components can be studied and related with other animal production issues, 

effectively complementing existing knowledge and pushing its boundaries. 

7. Omics and rumen microbiota 

The rumen microbial ecosystem is a complex anaerobic environment inhabited by 

bacteria, protozoa, fungi, methanogenic archaea, and bacteriophages [128], in which 

the core community is composed of poorly characterized microbes [129]. 

Nevertheless, rumen microbiota is known specialized in converting complex fibrous 

substrates into fermentation products that, with the microbial biomass, are utilized by 

ruminants for supporting their maintenance, growth, and lactation [127,130]. 

In developing countries located in the tropics, there are areas with high botanical 

diversity. In those areas, ruminants may play an important role in transforming those 

cellulosic plant materials into valuable sources of animal protein for human 

consumption [[131], [132], [133]]. Nevertheless, in the tropical regions besides low-

quality roughages, most ruminants are fed on agricultural crop-residues and agro-

industrial by-products often containing high levels of lignocellulosic materials, and 

low levels of good-quality protein. In addition, animal productivity is mainly limited 

by long dry seasons with a prevailing high temperature, and less feed available 

[134,135]. Therefore, manipulation of the ruminal microbiome to improve the 

utilisation of tropical forages and maximise ruminant productivity whilst minimising 

detrimental environmental outputs such as methane emissions are some of the most 

important research priorities regarding ruminant production in the tropics and sub-

tropics. 

https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0640
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0645
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0635
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0650
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0655
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0660
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0665
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0670
https://www.sciencedirect.com/science/article/pii/S1874391920302736?via%3Dihub#bb0675


The characterization of rumen microbiota based on sequencing target regions of the 

16S ribosomal RNA gene has been widely used. This approach provides information 

about the rumen microbial community but no information about their function [130]. 

However, the advances in the bioinformatics tools and omic technologies such as 

metagenomics, transcriptomics, metaproteomics, and metabolomics, allows a deeper 

insight into the rumen microbial ecology, particularly on the symbiotic host-microbe 

relationship and the impact of nutritional strategies on the animal performance [130]. 

Metagenomics allows the evaluation of both the diversity and the potential functional 

capacity of the microbiome, while metatranscriptomics can provide insight into the 

actual function of microbiomes via gene expression [128]. In addition to 

metatranscriptomics, the combination of metaproteomics and metabolomics can give 

information about the identification of the active microbial community. In addition, 

they inform on differently expressed metabolic pathways by accessing the proteins 

expressed and the metabolites produced through NMR- or MS-based methods [136]. 

Although next-generating sequencing methods and functional metagenomics are being 

now used to study the rumen microbiome in animals from tropical regions, integration 

the results with other meta-omics is still lacking. 

The complex relationship between ruminant and rumen-dwelling microbiota has been 

studied for years in efforts to identify those microorganisms and their functional 

contributions to the host’s energy requirements [137]. Henderson et al [129] examined 

the core rumen microbiota from ruminants in different regions of the world by 

sequencing regions of bacterial and archaeal 16S rRNA genes and ciliate protozoal 

18S rRNA genes, and found that the variability of rumen microorganisms is highly 

related to ruminant species, diet and geographical location. Thus, both the rumen 

microbiome and dietary nutrient utilization are expected to differ between ruminants 

from the tropics and temperate regions. Using omics to understand and gather more 

knowledge on this complex issue would undoubtedly benefit production systems. 

The ruminant species in the tropics include bovine, caprine and ovine, and their 

microbial communities have been evaluated using omics technologies, with results 

revealing that some taxa are commonly found in some ruminant species but inexistent 

in others [129,138]. Jami and Mizrahi [139] evaluated the composition and similarity 

of the microbiota of dairy cows and observed that there was a core rumen microbiota 

shared by all individuals. Notwithstanding, there were a large number of operational 
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taxonomic units (OTUs) that are not shared by all animals despite the use of an equal 

diet, sampling procedures and experimental conditions. These authors also noted that 

while a large number of species were not shared by all cows, there was a high 

phylogenetic similarity between the communities [139]. 

In many regions of the tropics, unlike temperate countries, the ruminant diet is based 

on low-quality roughages [[140], [141], [142], [143], [144]], thus it is essential to 

understand which enzymes are responsible for the degradation of the dietary fibre and 

which are the main microorganisms that synthesize them [142,143,145]. Many studies 

have elucidated the degradation of fibrous carbohydrates by using omic technologies 

and on how diet influences methane production in the rumen 

[142,[146], [147], [148]]. Research results have shown a similarity between enzymes 

acting on the degradation of fibrous carbohydrates in the rumen [145,149,150]. In 

Brazil, Lopes et al [145] using phylogenetic profiling analysis and shotgun-based 

sequencing, identified the Bacteroidetes or Firmicutes as the dominant phyla in the 

sheep rumen microbiome, followed by Proteobacteria, which were similar to those 

described in other studies [129]. These authors also using metagenomics data 

identified a set of potential carbohydrate-active enzymes in the rumen [145]. 

The rumen virome is much less studied, but in Australia, Ross et al [151] studied 

bacteriophages in dairy cows and reported a broad diversity of viruses between 

animals; however, cohabiting animals had a more similar virome sequencing profile 

than those which did not inhabit the same region. Recently, the rumen virome of 

sheep and goats from Kenya was also studied using metagenomics, but results showed 

significant contaminations with background DNA (i.e. bacterial and eukaryotic), 

highlighting that improvements in the viral DNA enrichment and isolation protocols 

are still needed [152]. 

As can be seen in Table 2, several studies in tropical countries on the rumen 

microbiome using 16S rRNA gene sequencing, metagenomics or transcriptomics have 

been published. Those studies are focused on how the rumen microbial community of 

different animal species degrades high-fibre feedstuffs, with a greater predominance 

of African, Asian and American countries. On the other hand, there is concern about 

environmental issues, e.g., ruminal methane production, which derives mostly from 

roughage fermentation. This is especially true in Australia and Brazil, where most 

ruminants are reared extensively, on C4 grass pastures [153]. The diversity of 
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feedstuffs used in ruminant diets in the tropics also drives researchers, mainly in Asia, 

to determine which microorganisms are present in the rumen, and how feed 

components, geographical location and species influence microbial diversity. 

Table 2. Examples of studies on the rumen microbiome using 16S rRNA gene sequencing, 

metagenomics or transcriptomics in tropical countries. 

Study Countries Authors 

Rumen microbial enzymes that 

degrade high-fiber feedstuffs 

South Africa; Saudi Arabia; 

Brazil; India; Israel; Mexico 
[145,[148], [149], [150],[154], [155], [156]] 

Microbial community of different 

ruminant species 

Australia; Colombia; Israel; 

India; Kenya 
[139,140,151,152,157,158] 

Influence of diet on the microbial 

community 

Australia; China; India; 

Mexico 
[141,146,151,[159], [160], [161]] 

Influence of diet on the methane 

production 
Australia; Brazil; China; Índia [142,162,163] 

Influence of geographical location 

on the microbial community 
Australia; Brazil; China [137,164,165] 

Metaproteomics can be used to characterise the functional activity of the microbial 

community [166]. Proteins give us the capacity to do taxonomic analysis based on the 

alignment of their amino acid sequence, allowing the link between taxa and function 

[167], including the identification of the active microbial expressed metabolic 

pathways [132]. Nevertheless, metaproteomics applied to rumen digesta samples can 

be very challenging because the rumen can contain high levels of plant secondary 

compounds, such as tannins, that complex with proteins and interfere with extraction 

and purification procedures [164]. Thus, due to several limitations, metaproteome 

studies applied to understand the composition and function of the ruminal microbiota 

are scarce. 

The first description of the ruminal proteome was made by Deusch and Seifert [165] 

with the identification of around 2000 proteins associated with the rumen microbial 

community. More recently, Snelling and Wallace [164] studied the rumen microbial 

composition of bovine and ovine subjects and, in similarity with other metagenomics 

studies, the enzymes involved in glycolysis, predominantly from 

the Firmicutes and Bacteroidetes phyla, dominated the prokaryotic metaproteome. 

These authors also found that the enzymes from methanogenic archaea were also 

abundant in the rumen. To the best of our knowledge, there are no studies involving 
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the characterization of the metaproteome of ruminants in tropical environments, 

which could be particularly interesting since a large proportion of the global ruminant 

population is located in these regions. 

The application of metabolomics to study the rumen microbial activity is also 

emerging, and its importance is linked to the fact that it can provide important 

biochemical insights into the role of host-diet interactions in the rumen. Indeed, 

during microbial fermentation and digestion of feedstuffs, several metabolites such as 

volatile FAs, organic acids, sugars, amino acids, amines, or FAs, are produced in the 

rumen. These metabolites are then used by the microbes for their proliferation, and 

further absorbed and utilized for meat and milk production, as well as for body 

maintenance [166]. The majority of the studies on rumen fluid metabolomics have 

investigated the increased proportion of concentrate/grain in a diet compared with 

roughage [157,167,168]. Zhang et al [157] found that high concentrate diets 

significantly increased the concentration of bacterial degradation products and some 

toxic compounds, including LPS, biogenic amines, or ethanolamine. In another study 

conducted in China, Zhao et al [169] showed that different types of roughages 

significantly influenced the ruminal microbial metabolome of dairy cows, in particular 

in the production of organic acids, amines, and amino acids. However, because 

metabolomics cannot directly link metabolites to a microbial species, associations 

with changes in microbial relative abundance through microbial profiling, 

metatranscriptomic or metaproteomic are required [133]. 

The challenge in the future would be integrating omics data to allow the construction 

of rumen specific microbial metabolic models [137] able to predict and generate 

ruminal environments and their occurring metabolic processes in order to drive 

improvements in animal productivity and environmental sustainability. 

8. Omics in tropical veterinary medicine: case studies 

Animal production in the tropics and the sub-tropics deals with a vast array of 

infectious diseases, external and internal parasitism and metabolic disease. The topic 

is very broad and vast. In order to be adequately addressed, several reviews would 

have to be dedicated to the topic. In this review, we have focused on two examples 

that are very characteristic and a clear example of animal health in these regions; tick-
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borne diseases (TBD) and gastrointestinal parasites. In this section, we will therefore 

focus on two case-studies where omics tools have been successfully applied. Fig. 

6 sums some findings that have been achieved in these areas using omics. 

 

1. Download : Download high-res image (491KB) 

2. Download : Download full-size image 

Fig. 6. Recent findings obtained using omics in tick-borne diseases (left) 

and Haemonchus contortus biology (right). 

8.1. Tick-borne diseases and omics: studying the host-vector-parasite triumvirate 

In tropical and sub-tropical regions, farmers frequently have to cope with TBD. These 

diseases are caused by intracellular parasites that infect the ruminant host via a tick. 

The losses that derive from TBD are immense, impairing the economic viability of 

farms in vast regions as well as negatively affecting food supply chains. This is 

particularly serious in rural areas. There are four major groups of such diseases in 

livestock: theileriosis, babesiosis, anaplasmosis and cowdriosis. To deal with them, 
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farmers can resort to either chemical treatments against ticks (e.g. dipping) or 

vaccines (i.e. tick or pathogen specific). The former could generate chemical-resistant 

ticks (i.e. vectors) as well as leave residues in edible products (e.g. milk and meat). In 

turn, many vaccines to treat these ailments are live (e.g. blood derived or attenuated) 

and require refrigeration, have short shelf lives, could potentially transmit other 

diseases or revert to virulence [174]. 

In 2012, Marcelino et al. [174] published a comprehensive review on the contribution 

of proteomics and other post-genomic tools (i.e. transcriptomics and metabolomics) to 

understand the interactions of the host-parasite and vector-parasite, which contribute 

towards the development of improved vaccines. Since then, several advancements 

have been achieved in studying these diseases. 

Heartwater disease is a TBD transmitted by Amblyomma ticks. It is caused by the 

gram-negative bacteria Ehrlichia ruminantium, which causes mortality rates that reach 

90% in sub-Saharan Africa and in the Caribbean [175]. This bacterium has high 

genetic variability, with strains with different levels of virulence, which limits vaccine 

efficacy. Marcelino et al. [176] compared the proteome of two strains: attenuated and 

virulent. The latter has higher abundance of proteins involved in energy conversion 

and production, which the authors related with energy requirements of virulent 

processes. Membrane MAP-1 (Major Antigenic Protein) family proteins were the 

most abundantly identified in the E. ruminantium proteome, which at the time, 

required further studies to understand their role. Additionally, AnkA protein was 

highly abundant in the virulent strain. This protein alters the host’s gene expression, 

allowing the manipulation of the inflammatory response from the host. A 

contemporary study found that the MAP-1 family proteins should be a priority target 

for the development of a vaccine, since they are involved in the adaptation of the 

parasite to the host and vector [177]. Other proteins such as the Type IV Secretion 

System (T4SS) proteins should also be targeted, since they transport bacterial DNA 

and protein to the host, to interfere with host metabolism. Later, these same genes 

were reported to be highly expressed in the E. ruminantium Gardel strain and the 

authors suggested that these MAP-1 proteins induce non-protective immune response 

[178]. A transcriptome study, of sheep peripheral blood mononuclear cell (PBMC) 

cells, has reported that this bacterium causes the downregulation of the innate immune 

response in the first day post-infection. The expression of genes related to this 
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response reaches a peak in the sixth day, with genes such as toll-like receptors (TLR), 

TLR-2 and TLR-4, which are known as receptors of bacterial pathogens. Moreover, 

there was a higher expression of cytokines during a feverish state [179]. Finally, a 

recent study has reported that the infection of vector and host cells alike is 

accompanied by an increased expression of MAP-1 genes. This was found to be 

related to the induction of non-protective antibodies by the MAP-1 proteins, a 

mechanism that protects the parasite from the host response [180]. 

Babesiosis is a TBD caused by parasites from the Babesia genus, such as B. 

bigemina and B. bovis. They infect erythrocytes, causing anaemia, fever and even 

death. In cattle, both of these species are the main agent of the disease, which is 

transmited by Rhipicephalus microplus and R. annulatus ticks [181]. For this TBD, 

research is focused in the study of vector-pathogen interactions to develop an anti-tick 

vaccine, since there is not much literature available on the pathogen-host interaction. 

For this purpose, Bohaliga et al. [182] have suggested three genes (BbiKSP, CCp2 

and CCp3) expressed by B. bigemina kinetes as putative antigens to develop a vaccine 

that inhibits the development of the pathogen in the vector, thus preventing host 

infection. Kinetes infect the female tick ovaries, perpetuating the infection by 

spreading on to the offspring. Johnson et al. [183] found that the BBOV_I002220 

gene was highly expressed by B. bovis kinetes. By having the female tick feeding on 

blood with kinete-specific antibodies, the development and dissemination 

of Babesia pathogens could be stopped. In addition, the exposure of ticks to B. 

bigemina downregulates the transcription of dapk-1 gene (pro-apoptotic kinase) in the 

salivary glands. This inhibition of apoptosis allows the maintenance of infection, 

increasing the chance of infecting the target-host [184]. Other authors found that ticks 

feeding on B. bovis infected calves have higher expression of several proteinases in 

the gut, a response of the immune system. Likewise, lipid metabolism genes, such as 

vitellogenin, were also upregulated, most likely due to the disruption of the infected 

erythrocytes that were ingested [184]. This information complements what was found 

for kinete gene and protein expression, allowing the comprehension of the biology 

behind Babesia pathogenicity. However, metabolomics studies are clearly lacking, 

which would undoubtedly improve the currently available knowledge. In addition, 

researchers have also been dedicating resources to further understand lesser 

known Babesia species such as B. orientalis [185], B. ovata [186] and B. 
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divergens [187]. Further research would be expected in the next years, aiming at 

understanding these species that affect cattle, water buffalos and small ruminants 

alike. 

In recent years, significant advancements were made in the study of anaplasmosis 

using omics approaches. This disease causes anaemia, fever, abortions and weight 

loss, often culminating in death [188]. In cattle, it is caused by Anaplasma marginale, 

a gram-negative bacteria that infects ruminant erythrocytes [189]. The genome 

sequence of different Mexican strains has been reported recently [188]. At the 

moment, there are not effective treatments for this disease. Most efforts are being 

directed at finding antigens to be used in an attenuated vaccine. Pierle et al. [190] used 

a transcriptomics approach to identify genes related with the slow growth phenotype, 

which allows immunization using attenuated vaccines. The authors found three 

metabolic pathways differentially expressed in slow growing A. marginale: 

translation, translation elongation and purine biosynthesis. These findings point 

towards the importance that nucleotide synthesis has, enabling the development of this 

pathogen. In the future, other approaches should also be considered, since it is well 

documented that attenuated vaccines could regress to virulence. Recently, other 

significant advancements have been made in small ruminant anaplasmosis, namely, 

the sequencing of the A. ovis genome isolated from goats [191]. This has also been 

done by other authors [192]. Albeit not as severe for small ruminants as it is for cattle, 

small ruminant anaplasmosis still causes significant losses when considering its wide 

dissemination. Therefore, having its genome sequenced lays the foundation for future 

studies using post-genomic tools to identify useful antigens. 

Theileriosis has been widely studied in recent years. This TDB is a particular case, 

since it modulates the host’s cell gene expression, causing tumour-like cell 

proliferation. It is endemic to Africa and China and is currently present in Southern 

European countries such as Portugal [193]. Theileria parva and T. annulata are the 

two main causative agents of this disease. These protozoa infect host’s leukocytes, 

inducing cell transformation and metastasis. Authors have found that the bta-miR-

181a and bta-miR-181b (tumour supressing genes) are under expressed in infected 

cells, whilst simultaneously increasing expression of pro-oncogenic miRNA [194]. In 

a 1DE-MS/MS proteome study, Witschi et al. [195] have studied the proteome of T. 

annulata schizont, and found that the TCA cycle enzymes are not all expressed by this 
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pathogen. The authors did not identify proteins related with the interaction between 

parasite-host. Later, using a more sensitive LC-MS/MS approach, other authors 

successfully identified SVSP and TashAT family proteins, which include 

TpMuguga_03g00882 protein which acts on the nucleus of the host, modifying gene 

expression. This disease is particularly complex and warrants further research to fully 

understand how it modifies gene expression, particularly now that it has been detected 

in small ruminants [196] in addition to cattle. Using post genomic tools to delve into 

post-translational modifications [197] and the mechanisms of N-glycosylation beyond 

genomics [198] should uncover exciting discoveries. 

The above-mentioned studies are a clear example of how omics allow an in depth 

understanding of complex diseases. Heartwater for example is a serious disease that 

makes the insertion of more productive breeds in endemic areas unviable, 

compromising potential productivity in areas with food shortages. In addition, TBD 

are could easily enter unaffected regions where the vectors are already present, such 

as the USA [174]. The vaccines currently available are not fully effective. Hence, 

using proteomics and transcriptomics has allowed the scientific community to gather 

information that could potentially improve vaccine development and efficiency. 

Diseases such as anaplasmosis are lacking important details regarding parasite biology 

and scientists are only now scratching the surface. Lesser known diseases and 

emerging pathogen species should be considered in future research on TBD using 

omics approaches. 

8.2. Recent advances in Haemonchus contortus biology 

Helminthic parasites such as Haemonchus contortus cause massive losses in small 

ruminant production worldwide. This parasite feeds on the blood of its host, in the 

stomach (abomasum). It may cause anaemia and gastritis. It is transmitted orally, by 

the ingestion of contaminated pasture. Control of these parasites is commonly made 

with chemicals or drug administration to the host. Rising concerns regarding the 

contamination of edible products and reports of drug-resistant parasites have propelled 

the industry to seek viable alternatives for parasite control [199], in a very similar way 

to what we have reported previously for TBD. Using omics, scientists have recently 

made significant advances towards understanding H. contortus biology. 
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The main alternative for drug application towards the treatment of gastrointestinal 

parasites such as H. contortus, are vaccines, although dietary manipulation has also 

been reported [200]. Specifically, some studies were published where the authors aim 

to find candidate antigens for vaccines aiming to disrupt the digestion of blood protein 

by the worm. Dicker et al. [201] identified candidate antigens common to both H. 

contortus and Mecistocirrus digitatus, a cattle parasite. These were proteins, such as 

glutamate dehydrogenase, zinc metallopeptidases are common to both parasites. This 

could allow the development of a polyvalent vaccine. In 2018, Sallé et al. [202] 

reported the mechanism of resistance of H. contortus male worms to Barbervax®, a 

commercially available anti-helminth vaccine. This vaccine contains two protease 

fractions: H11 and H-gal-GP. These aim at disrupting the digestion of haemoglobin, 

which results in the decrease of eggs expelled by the host, ultimately reducing pasture 

contamination. Surviving worms increased the expression of cysteine peptidase, 

which increases proteolysis rates, counter-acting the effect of the vaccine in addition 

to possibly increase IgG degradation in the gut. Due to the high genetic variability of 

this parasite, having several targets in vaccines would be very important for vaccine 

development. Having ineffective vaccines could lead to resistant worms which would 

hinder parasite control in the long-term. Another approach has been carried out that 

would avoid this possibility: using resistant breeds or select towards resistance. Zhang 

et al. [203] reported that there is a strong relation between gene expression towards re-

organization of the abomasum epithelial layer and resistance against H. contortus. 

This points out to the epithelial turnover being partly responsible for increased worm 

expulsion. In addition, the latter authors found that 20% of the genes differentially 

expressed infected resistant Merino sheep were related with extracellular exosomes, 

which are important organelles for antigen presentation during parasitic infections. 

Hence, vaccine development and breed selection could be regarded as the most viable 

alternatives to current widespread practices of chemical treatments. Moreover, 

selecting hardier breeds against gastrointestinal parasites in a similar way to what has 

been presented for sheep against SWL would warrant further studies. Omics 

applications could provide the solution to find resistance-granting pathways and 

molecular mechanisms for susceptibility. 

Parasite biology and host response have also been addressed. Recently, Wang et al. 

[204] have studied the phosphoproteome of H. contortus, throughout its development. 
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The authors identified several phosphorilations along the IGF-1 signalling pathway, 

which could be related to the arrested development of the larvae during the L3 stage, 

during which they contaminate pasture. Arresting its development, gives the parasite 

the ability to contaminate the pasture and survive without a host for long periods. To 

evaluate host response and the effect of stress hormones during infection, Chen et al. 

[205] treated H. contortus worms with norepinephrine in vitro and made a proteome 

analysis of its secretome and body proteins. Hormone treatment significantly altered 

protein, fat and energy metabolism. Galectin expression increased. This is a 

mechanism of infection in which the worm releases this protein to inhibit host 

expression of IL-2, IL-4, INF-γ and TNFα. Protein-dissulphide isomerase increased in 

the body and secretome, which protects the worm cells from oxidative stress and 

maintains endoplasmatic reticulum redox homeostasis. In the host’s PBMC, this 

hormone lowers expression of inflammatory response mediators such as IL-2. 

These studies are an example of the importance of omics-oriented approaches to 

answer complex questions and uncover new possibilities. From analysing breed 

resistance to evaluating the infection mechanism of H. contortus, omics results are 

allowing the development of very important practices to control this parasite. In the 

future, other approaches would also be useful, such as metabolomics, to complement 

the results found in transcriptomics and proteomics studies. Moreover, exploring the 

resistance of breeds against this parasite and focusing on the molecular mechanisms 

that allow improved resistance would surely improve reproduction programmes and 

further inform the farmers decision making. 

9. Conclusions and future perspectives 

Omics research in the tropics has the potential to benefit animal production in such 

countries. The challenges ahead are immense. Environmental changes could impair 

production conditions in already harsh regions, such as the ones mentioned for 

Australia. Areas where extensive agriculture is the norm would benefit from omics to 

understand how to modulate the rumen environment and take the most from the 

resources available. Further understanding on how colostrum components are 

absorbed by the young animal could help the reduction of early-life mortality. 

Furthermore, additional research is necessary to analyse the full extent of HS on milk 
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and its derived products. The study and modulation of pathways related to HS 

tolerance would surely benefit the dairy industry. The use of omics to study the meat 

quality of less known species, such as the water buffalo (Bubalus bubalis), under 

different production systems would also be interesting. Finally, the study of the effect 

of nutritional strategies to improve animal performance on the various omics should 

uncover new possibilities. 

However, there is yet a long way to optimize omics research in the tropical context. 

Omics research is heavily dependent on quality databases. The Zebu cattle is, to this 

date, without a properly composed database to explore, for instance, its proteome. 

This causes the researchers to use the database that is closer taxonomically to the 

studied species, as done before in a study with wild ruminants [206]. The same issue 

could rise from studying other uncommon tropical or sub-tropical species, such as the 

dromedary (Camelus dromedarius) or the yak (Bos grunniens), the water buffalo 

(Bubalus bubalis) or South American camelids (llama: Lama glama and 

alpaca Vicugna pacos). 

Finally, and similarly to many areas of animal science, the application of omics is 

hindered by different factors that are very difficult to control. These include many 

variables. However, a limited number of analysed animals, a difficulty establishing 

adequate and representative control groups or the very access to omics technologies 

and state of the art omics platforms is still a major challenge. Therefore, it is of the 

utmost importance to propose a general experimental framework for reaching 

statistically robust and practically sound strategies for improving animal production 

via omics tools. In such a context, and given the heterogeneity of tropical domestic 

breeds, the establishment of a minimum experimental group size of 4-6 animals could 

be proposed. Regardless of the experimental design, one important aspect that needs 

to be taken into consideration by animal scientists using omics is the complimentary 

nature of the different omics. Indeed, an approach using transcriptomics, proteomics 

and metabolomics is always to be preferable when addressing a research topic such as 

those mentioned in this review. The access to state of the art omics platforms is also a 

major challenge, particularly given the high costs and expertise such platforms 

comprise. To circumvent such problems, scientific cooperation is the only possible 

answer. Despite all the difficulties and challenges, in the future, it is expectable to see 

a rising number of publications related to animal production in the tropics integrated 
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with omics approaches. This would definitely help the industry to cope with the 

challenges ahead. 
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