1,005 research outputs found

    Driving of Outer Belt Electron Loss by Solar Wind Dynamic Pressure Structures : Analysis of Balloon and Satellite Data

    Get PDF
    We present observations of similar to 10-60 min solar wind dynamic pressure structures that drive large-scale coherent similar to 20-100 keV electron loss from the outer radiation belt. A combination of simultaneous satellite and Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) observations on 11-12 January 2014 shows a close association between the pressure structures and precipitation as inferred from BARREL X-rays. Specifically, the structures drive radial ExB transport of electrons up to 1 Earth radii, modulating the free electron energy available for low-frequency plasmaspheric hiss growth, and subsequent hiss-induced loss cone scattering. The dynamic pressure structures, originating near the Sun and commonly observed advecting with the solar wind, are thus able to switch on scattering loss of electrons by hiss over a large spatial scale. Our results provide a direct link between solar wind pressure fluctuations and modulation of electron loss from the outer radiation belt and may explain long-period modulations and large-scale coherence of X-rays commonly observed in the BARREL data set. Plain Language Summary The Earth's low-density magnetosphere is a region of enclosed magnetic field lines that contains energetic electrons ranging from eV to MeV energies. These populations can be greatly enhanced in response to solar driving. Following enhancements, energetic electron populations are depleted on timescales of hours to days by various processes. One important depletion process occurs when an electromagnetic plasma wave called plasmaspheric hiss, which exists within a high plasma density region called the plasmasphere and its (occasional) radial extension called the plume, scatters energetic electrons into the atmosphere. In this paper, we show that these hiss waves can be switched on by compressions of the magnetosphere which occur in response to similar to 1 hr long pressure structures in the solar wind. These structures originate at or near the Sun and are very common in the solar wind at 1 AU. The newly excited hiss waves scatter electrons into the atmosphere where they are observed on balloon-borne X-ray detectors. Our results suggest that magnetospheric models that predict the loss of electrons from hiss waves may be improved by consideration of solar wind pressure-driven dynamics.Peer reviewe

    Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    Get PDF
    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics

    Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    Get PDF
    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1 integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115 GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of the Helicity Fractions of W Bosons from Top Quark Decays Using Fully Reconstructed top-antitop Events with CDF II

    Get PDF
    We present a measurement of the fractions F_0 and F_+ of longitudinally polarized and right-handed W bosons in top quark decays using data collected with the CDF II detector. The data set used in the analysis corresponds to an integrated luminosity of approximately 318 pb -1. We select ttbar candidate events with one lepton, at least four jets, and missing transverse energy. Our helicity measurement uses the decay angle theta*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W momentum in the top quark rest frame. The cos(theta*) distribution in the data is determined by full kinematic reconstruction of the ttbar candidates. We find F_0 = 0.85 +0.15 -0.22 (stat) +- 0.06 (syst) and F_+ = 0.05 +0.11 -0.05 (stat) +- 0.03 (syst), which is consistent with the standard model prediction. We set an upper limit on the fraction of right-handed W bosons of F_+ < 0.26 at the 95% confidence level.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Search for a Higgs Boson Produced in Association with a W Boson in pbar-p Collisions at sqrt{s} = 1.96 TeV

    Get PDF
    We present a search for a standard model Higgs boson produced in association with a W boson using 2.7 1/fb of integrated luminosity of pbar-p collision data taken at sqrt{s} = 1.96 TeV. Limits on the Higgs boson production rate are obtained for masses between 100 GeV and 150 GeV. Through the use of multivariate techniques, the analysis achieves an observed (expected) 95% confidence level upper limit of 5.6 (4.8) times the theoretically expected production cross section for a standard model Higgs boson with a mass of 115 GeV.Comment: submitted to Phys. Rev. Let

    Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360 pb-1 sample of data collected with the CDF II detector in p-pbar collisions at sqrt{s}=1.96 TeV. Semileptonic decays of B0, B+, and B_s mesons, as well as Lambda_b baryons, are reconstructed. For an effective bottom hadron p_T threshold of 7 GeV/c, the fragmentation fractions are measured to be f_u/f_d=1.054 +/- 0.018 (stat) +0.025-0.045(sys) +/- 0.058 (Br), f_s/(f_u+f_d)=0.160 +/- 0.005 (stat) +0.011-0.010 (sys) +0.057-0.034 (Br), and f_{Lambda_b}/(f_u+f_d)=0.281\pm0.012 (stat) +0.058-0.056 (sys) +0.128-0.086 (Br), where the uncertainty (Br) is due to uncertainties on measured branching ratios. The value of f_s/(f_u+f_d) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio f_{Lambda_b}/(f_u+f_d) is approximately twice the value previously measured at LEP. The approximately 2 sigma discrepancy is examined in terms of kinematic differences between the two production environments.Comment: Submitted to PRD, 54 pages, 53 plot

    Observation and Mass Measurement of the Baryon Ξb\Xi^-_b

    Get PDF
    We report the observation and measurement of the mass of the bottom, strange baryon Ξb\Xi^-_b through the decay chain ΞbJ/ψΞ\Xi^-_b \to J/\psi \Xi^-, where J/ψμ+μJ/\psi \to \mu^+ \mu^-, ΞΛπ\Xi^- \to \Lambda \pi^-, and Λpπ\Lambda \to p \pi^-. Evidence for observation is based on a signal whose probability of arising from the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard deviations. The Ξb\Xi^-_b mass is measured to be 5792.9±2.55792.9\pm 2.5 (stat.) ±1.7\pm 1.7 (syst.) MeV/c2c^2.Comment: Minor text changes for the second version. Accepted by Phys. Rev. Let

    Polarizations of J/psi and psi(2S) Mesons Produced in ppbar Collisions at 1.96 TeV

    Get PDF
    We have measured the polarizations of \jpsi and \psiprime mesons as functions of their transverse momentum \pt when they are produced promptly in the rapidity range y<0.6|y|<0.6 with \pt \geq 5 \pgev. The analysis is performed using a data sample with an integrated luminosity of about 800 \ipb collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as \pt increases from 5 to 30 \pgev. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of \jpsi and \psiprime mesons from BB-hadron decays are also reported.Comment: 8 pages, 7 figures, published in Physical Review Letter

    Search for Third Generation Vector Leptoquarks in p anti-p Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We describe a search for a third generation vector leptoquark (VLQ3) that decays to a b quark and tau lepton using the CDF II detector and 322 pb^(-1) of integrated luminosity from the Fermilab Tevatron. Vector leptoquarks have been proposed in many extensions of the standard model (SM). Observing a number of events in agreement with SM expectations, assuming Yang-Mills (minimal) couplings, we obtain the most stringent upper limit on the VLQ3 pair production cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317 GeV/c^2 (251 GeV/c^2) at 95% C.L.Comment: 7 pages, 2 figures, submitted to PR
    corecore