80 research outputs found

    Characterization of indoor/outdoor settled dust and air pollutants in Damaturu, Nigeria

    Get PDF
    This paper presents results of on-going experiments being undertaken to characterise the composition of settled dusts and some airborne contaminants in homes and outdoors in Damaturu, north-eastern Nigeria. These have involved the physical analysis of the dust samples collected from different homes by scanning electron microscopy (SEM) which showed images of particles of 2µm to 50µm and fragmented filamentous particles of 50µm to 200µm. Microbiological analysis conducted include media culture and microscopic observations where a range of fungal and bacterial colonies were identified with colony forming units in settled dust and air of between 1.02 10 4 to1.18 10 5 CFU g -1 and 1.07 10 4 1.69 10 5 CFU m -3 (for fungi)and 7.70 10 3 to1.14 10 5 CFU g -1 , 1.90 10 3 to 1.13 10 5 CFU m -3 (for bacteria) . Metal analysis by ICP-MS (total quant method) of the settled dusts revealed the presence of metal elements in the range of Al>Na>Mg>Ca>K>P>Si>Mn>Ti and indicated the maximum concentration of Lead, Copper, Cadmium, Nickel and Zinc (mg kg -1 ) to bePb-89.7, Cu-68.4, Cd-15.6, Ni-14.9, Zn-1.15.The results also revealed the presence of organic chemical pollutants in varying concentrations in the indoor and outdoor dusts and airborne samples within different homes; eight semi-volatile and volatile organic compounds(SVOCs/VOCs); benzene, hex anal, nonanal, diethyl phthalate (DEP), diisobutylphthalate (DIBP), dibutylphthalate (DBP), and diethylhexylphthalate (DEHP) and limonene were quantified among the numerous organic chemicals present in the samples analysed based on their frequency of occurrence in the samples collected, as well as their potential health effects arising from short term and long term exposure as reported in earlier studies. The results suggested that the indoor environments contain considerably more organic chemical pollutants than the outdoors. From the results obtained so far on the chemical, metal, and biological pollutants present as well as the physical characteristics of indoor dusts from Nigerian homes, it can be ascertained that the dusts act as a reservoir of pollutants that can increase peoples’ exposure and be a risk to the health of residents of the community

    Aircraft Cabin Air Sampling Study; Part 2 of the Final Report

    Get PDF
    This is the second part of the report on aircraft cabin air quality prepared by Cranfield University for the Department for Transport. The study was set up in light of concerns about possible adverse impacts on the health and well-being of air crew resulting from exposure to substances in cabin air. Part 1 of the report describes in detail the methodology used in the study, summarises the results obtained and assesses cabin air quality against available exposure limits and the quality of air encountered in domestic settings. This second part comprises principally a record of the data obtained on individual flight sectors

    ENVIE Co-ordination action on indoor air quality and health effects; WP3 Final report – Characterisation of spaces and source

    No full text
    Human exposure to environmental pollutants occurs via various pathways. For many pollutants, especially the volatile ones, air exposure is the dominant pathway. Exposure via air occurs both outdoors and indoors, with diverse types of indoor spaces playing a role, e.g., home, workplace, and passenger cabins of means of transportation. In average people spend over 90% of their time indoors, that percentage being particularly high for some specific groups as new-born, elderly, disabled or sick people. The global exposure to air contaminants is therefore drastically determined by indoor conditions. It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. For a majority of indoor air contaminants, particularly in the presence of common indoor sources, however, indoor concentrations usually exceed outdoor concentrations, for some pollutants even with an indoor/outdoor ratio of 10 or 20. Emissions are identified, accordingly to the EnVIE approach and grouped into four categories: building materials and related sources, including dampness and moulds; ventilation, natural and mechanical, including, or not, heating, cooling and humidification/ dehumidification; consumer products, furnishing, cleaning and household products; and occupant activities. Emission of chemical substances from construction materials and products in buildings to the indoor air have been reported and reviewed for a wide range of substances, including those formed during secondary reactions, causing complaints of irritation and odour. During the last two decades there has been increasing advances in construction technology that have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings, they also provide indoor environments with contaminants in higher concentrations than are found outside. Wood and cork are now frequently used as a building product for floor coverings, because the material is often regarded as “natural” and “healthy”. However, industrial products, even based on natural raw materials, may contain a number of artificial ingredients and the chemical emissions will strongly depend on the type of additives and the manufacturing process. Modern interior paints are usually based on a polymeric binder. In order to fulfil requirements on e.g., durability, paint contains various functional chemicals. Water-borne paints usually also contains small amounts of approved biocides. Polymeric binders with a very low content of residual monomers have been developed for paint. Besides the release of substances to the indoor air due to primary emission, damp building materials may give rise to volatile substances formed during secondary reactions. Semi-volatile organic compounds (SVOCs) are now receiving much more attention than heretofore. The HVAC (Heating, Ventilation and Air Conditioning) systems as providers, among others, of services of cleaning and dilution of pollutants in the indoor air are also recognized as potential pollution sources. Several studies have shown that the prevalence of SBS symptoms is often higher in air conditioned buildings than in buildings with natural ventilation. 8 The outdoor air introduced indoors through either ventilation systems or natural means is also an important and not always controllable source for the intake of some outdoor pollutants. Outdoor air used for ventilation may also be source of pollution containing particulate matter, particulates of biological origin (microorganisms, pollen, etc.) and various gases like NOx and O building structures which is a driving force for the airflows which will transport to indoors water vapour and gaseous or particulate contaminants. Volatile organic compounds are emitted from a wide variety of household and consumer products with emission rates that are strongly dependent on the type of application and are distributed over several orders of magnitude. A number of product classes are identified and information on ingredients and available data on emissions from individual products are presented. Human activities and the associated use of products encompass a wide range of indoor sources involving release of inorganic gases, particles and organic compounds as a consequence of the activity. For some releases such as with air fresheners the release is a necessary part of the activity to achieve the intended effect whereas for others, such as the release of combustion fumes from a gas appliance, the purpose of the action (in this case generation of heat) is different from the emission. Combustion processes are an important source of a range of air pollutants as carbon monoxide, nitrogen dioxide, sulphur dioxide, particulates and associated inorganic and organic chemicals, organic vapours e.g. formaldehyde, acetaldehyde, and benzene. Sources of these are present in both ambient and indoor environments. The concentrations present in the ambient air provide a baseline for the level of pollutant found indoors as this air enters indoors by processes of infiltration and ventilation. However, the concentration indoors will be modified by processes of sorption to surfaces and chemical reaction depending on the chemical and physical properties of the pollutant and internal surfaces. People themselves are a source of emissions of chemicals and gases, notably CO range of organic compounds that are referred to as body odours. The removal of such body odours is a prime objective of ventilation in order to achieve a satisfactory indoor environment. WP3 aims at to characterize spaces and sources in order to understand where and how to act to guarantee good IAQ. From the two strategies for good IAQ, source control and ventilation, the precautionary principle suggests that first priority shall be given to source control, avoiding, mitigating or simply managing sources of emissions. An overview of all policies on IAQ or related to IAQ, existing or in preparation, directly related to indoor air sources, but also covering outdoor air and industrial emissions, which could affect indirectly IAQ is made. Considering the presented it could be concluded that IAQ is yet poorly regulated at EU level, and in view of that some recommendations are made. The recommendations on policies have taken into account the existing related to IAQ policies such as new EU policies on chemicals (REACH; 2006/121/EC), consumer products (GPSD; 2001/95/EC), construction products (CPD; 89/106/EC) and energy performance of buildings (EPBD; 2002/91/EC) all refer to IAQ issues - suggesting that they could, and probably should, contribute to IAQ policy development and advocate an integrative and comprehensive policy approach centred

    Pollutant exposures and health symptoms in aircrew and office workers: Is there a link?

    Get PDF
    AbstractSensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity.A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a “worst-case scenario” which assumed a simultaneous constant exposure for 8h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s).The concentration data suggest that, under the assumption of a conservative “worst-case scenario”, aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible

    Volatile organic compounds sensing with use of fibre optic sensor with long period grating and mesoporous nano-scale coating

    Get PDF
    A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, calix[4]arene (CA[4]) or calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH) and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006) was used to test the LPG sensor performance

    Harmonisation framework for health based evaluation of indoor emissions from construction products in the European Union using the EU-LCI concept

    Get PDF
    This report describes a harmonised procedure for establishing a list of compounds and their associated LCI (Lowest Concentration of Interest) values for the evaluation of emissions from construction products taking into account existing procedures used in some Member States (i.e. ANSES in France and AgBB in Germany). It provides an appropriate health‐protective, science-based and transparent yet pragmatic approach with a flexible framework that enables review of the procedure to take into account new knowledge (e.g. data resulting from the REACH implementation process) for future revision of the EU-LCI master list in terms of both the compounds listed and their EU-LCI values.JRC.I.1-Chemical Assessment and Testin

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8–98·1) in Iceland, followed by 96·6 (94·9–97·9) in Norway and 96·1 (94·5–97·3) in the Netherlands, to values as low as 18·6 (13·1–24·4) in the Central African Republic, 19·0 (14·3–23·7) in Somalia, and 23·4 (20·2–26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1–93·6) in Beijing to 48·0 (43·4–53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6–68·8) in Goa to 34·0 (30·3–38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view—and subsequent provision—of quality health care for all populations.info:eu-repo/semantics/publishedVersio

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
    corecore