100 research outputs found

    Ionosphere-thermosphere coupling via global-scale waves: new insights from two-years of concurrent in situ and remotely-sensed satellite observations

    Get PDF
    Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes (< 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generated in situ. Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due to in situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves

    Prevalence of blindness in Western Australia: a population study using capture and recapture techniques

    Get PDF
    Aim: To determine the prevalence of blinding eye disease in Western Australia using a capture and recapture methodology. Methods: Three independent lists of residents of Western Australia who were also legally blind were collated during the capture periods in 2008–9. The first list was obtained from the state-wide blind register. A second list comprised patients routinely attending hospital outpatient eye clinics over a 6-month period in 2008. The third list was patients attending ophthalmologists' routine clinical appointments over a 6-week period in 2009. Lists were compared to identify those individuals who were captured on each list and those who were recaptured by subsequent lists. Log-linear models were used to calculate the best fit and estimate the prevalence of blindness in the Western Australian population and extrapolated to a national prevalence of blindness in Australia. Results: 1771 legally blind people were identified on three separate lists. The best estimate of the prevalence of blindness in Western Australia was 3384 (95% CI 2947 to 3983) or 0.15% of the population of 2.25 million. Extrapolating to the national population (21.87 million) gave a prevalence of legal blindness of approximately 32 892 or 0.15%. Conclusion: Capture–recapture techniques can be used to determine the prevalence of blindness in whole populations. The calculated prevalence of blindness suggested that up to 30% of legally blind people may not be receiving available financial support and up to 60% were not accessing rehabilitation services

    Space Weather Modeling Capabilities Assessment: Auroral Precipitation and HighĂą Latitude Ionospheric Electrodynamics

    Full text link
    As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately.Key PointsA working team has been established to develop a process for validation of auroral precipitation and electrodynamics modelsValidation of auroral electrodynamic parameters requires generation of ground truth data sets for selected eventsCurrent observations and data assimilation techniques continue to improve the accuracy of global auroral electrodynamic specificationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148365/1/swe20815_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148365/2/swe20815.pd

    Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians

    Get PDF
    This work investigated the molecular epidemiology and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) isolated from veterinarians in Australia in 2009. The collection (n = 44) was subjected to extensive molecular typing (MLST, spa, SCCmec, dru, PFGE, virulence and antimicrobial resistance genotyping) and antimicrobial resistance phenotyping by disk diffusion. MRSA was isolated from Australian veterinarians representing various occupational emphases. The isolate collection was dominated by MRSA strains belonging to clonal complex (CC) 8 and multilocus sequence type (ST) 22. CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B] , spa variable,) were strongly associated with equine practice veterinarians (OR = 17.5, 95% CI = 3.3-92.5, P < 0.001) and were often resistant to gentamicin and rifampicin. ST22-IV [2B], spa variable, were strongly associated with companion animal practice veterinarians (OR = 52.5, 95% CI = 5.2-532.7, P < 0.001) and were resistant to ciprofloxacin. A single pig practice veterinarian carried ST398-V [5C2], spa t1451. Equine practice and companion animal practice veterinarians frequently carried multiresistant-CC8 and ST22 MRSA, respectively, whereas only a single swine specialist carried MRSA ST398. The presence of these strains in veterinarians may be associated with specific antimicrobial administration practices in each animal species

    The Essential Role for Laboratory Studies in Atmospheric Chemistry

    Get PDF
    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines

    The Essential Role for Laboratory Studies in Atmospheric Chemistry

    Get PDF
    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines
    • 

    corecore