188 research outputs found

    Red Galaxy Growth and the Halo Occupation Distribution

    Full text link
    We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and clustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.Comment: Accepted for publication in the ApJ. 34 pages, 22 Figures, 5 Table

    Sussing merger trees: a proposed merger tree data format

    Get PDF
    We propose a common terminology for use in describing both temporal merger trees and spatial structure trees for dark-matter halos. We specify a unified data format in HDF5 and provide example I/O routines in C, FORTRAN and PYTHON

    Morphologies of z~0.7 AGN host galaxies in CANDELS : no trend of merger incidence with AGN luminosity

    Get PDF
    PS would like to acknowledge funding through grant ASI I/005/11/0. DKoo would like to acknowledge funding through grant NSF AST-0808133. SJ acknowledges financial support from the EC through an ERC grant StG-257720.The processes that trigger active galactic nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 ≲ log (LX [erg s−1]) ≲ 44.5. ‘Fake AGN’ are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable asymmetries, Sérsic indices and ellipticities at rest frame ∼950 nm. AGN host galaxies show neither higher average asymmetries nor higher fractions of very disturbed objects. There is no increase in the prevalence of merger signatures with AGN luminosity. At 95 per cent confidence we find that major mergers are responsible for <6 per cent of all AGN in our sample as well as <40 per cent of the highest luminosity AGN (log  (LX [erg s−1]) ∼ 43.5). Major mergers therefore either play only a very minor role in the triggering of AGN in the luminosity range studied or time delays are too long for merger features to remain visible.PostprintPeer reviewe

    The environments of z~1 Active Galactic Nuclei at 3.6um

    Get PDF
    We present an analysis of a large sample of AGN environments at z~1 using stacked Spitzer data at 3.6um. The sample contains type-1 and type-2 AGN in the form of quasars and radio galaxies, and spans a large range in both optical and radio luminosity. We find, on average, that 2 to 3 massive galaxies containing a substantial evolved stellar population lie within a 200-300 kpc radius of the AGN, constituting a >8-sigma excess relative to the field. Secondly, we find evidence for the environmental source density to increase with the radio luminosity of AGN, but not with black-hole mass. This is shown first by dividing the AGN into their classical AGN types, where we see more significant over-densities in the fields of the radio-loud AGN. If instead we dispense with the classical AGN definitions, we find that the source over-density as a function of radio luminosity for all our AGN exhibits a positive correlation. One interpretation of this result is that the Mpc-scale environment is in some way influencing the radio emission that we observe from AGN. This could be explained by the confinement of radio jets in dense environments leading to enhanced radio emission or, alternatively, may be linked to more rapid black-hole spin brought on by galaxy mergers.Comment: 13 pages, 12 figures, accepted by MNRA

    Particle Probe of Horava-Lifshitz Gravity

    Full text link
    Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through particle geodesics. Gravitational force of KS black hole becomes weaker than that of Schwarzschild around horizon and interior space. Particles can be always scattered or trapped in new closed orbits, unlike those falling forever in Schwarzschild black. The properties of null and timelike geodesics are classified with values of coupling constants. The precession rates of the orbits are evaluated. The time trajectories are also classified under different values of coupling constants for both null and timelike geodesics. Physical phenomena that may be observable are discussed.Comment: 10 pages, 8 figure

    The Effect of Mass Ratio on the Morphology and Time-scales of Disc Galaxy Mergers

    Full text link
    The majority of galaxy mergers are expected to be minor mergers. The observational signatures of minor mergers are not well understood, thus there exist few constraints on the minor merger rate. This paper seeks to address this gap in our understanding by determining if and when minor mergers exhibit disturbed morphologies and how they differ from the morphology of major mergers. We simulate a series of unequal-mass moderate gas-fraction disc galaxy mergers. With the resulting g-band images, we determine how the time-scale for identifying galaxy mergers via projected separation and quantitative morphology (the Gini coefficient G, asymmetry A, and the second-order moment of the brightest 20% of the light M20) depends on the merger mass ratio, relative orientations and orbital parameters. We find that G-M20 is as sensitive to 9:1 baryonic mass ratio mergers as 1:1 mergers, with observability time-scales ~ 0.2-0.4 Gyr. In contrast, asymmetry finds mergers with baryonic mass ratios between 4:1 and 1:1 (assuming local disc galaxy gas-fractions). Asymmetry time-scales for moderate gas-fraction major disc mergers are ~ 0.2-0.4 Gyr, and less than 0.06 Gyr for moderate gas-fraction minor mergers. The relative orientations and orbits have little effect on the time-scales for morphological disturbances. Observational studies of close pairs often select major mergers by choosing paired galaxies with similar luminosities and/or stellar masses. Therefore, the various ways of finding galaxy mergers (G-M20, A, close pairs) are sensitive to galaxy mergers of different mass ratios. By comparing the frequency of mergers selected by different techniques, one may place empirical constraints on the major and minor galaxy merger rates.Comment: 16 pages; resubmitted to MNRA

    The Representative XMM-Newton Cluster Structure Survey (REXCESS) of an X-ray Luminosity Selected Galaxy Cluster Sample

    Get PDF
    The largest uncertainty for cosmological studies using clusters of galaxies is introduced by our limited knowledge of the statistics of galaxy cluster structure, and of the scaling relations between observables and cluster mass. To improve on this situation we have started an XMM-Newton Large Programme for the in-depth study of a representative sample of 33 galaxy clusters, selected in the redshift range z=0.055 to 0.183 from the REFLEX Cluster Survey, having X-ray luminosities above 0.4 X 10^44 h_70^-2 erg s^-1 in the 0.1 - 2.4 keV band. This paper introduces the sample, compiles properties of the clusters, and provides detailed information on the sample selection function. We describe the selection of a nearby galaxy cluster sample that makes optimal use of the XMM-Newton field-of-view, and provides nearly homogeneous X-ray luminosity coverage for the full range from poor clusters to the most massive objects in the Universe. For the clusters in the sample, X-ray fluxes are derived and compared to the previously obtained fluxes from the ROSAT All-Sky Survey. We find that the fluxes and the flux errors have been reliably determined in the ROSAT All-Sky Survey analysis used for the REFLEX Survey. We use the sample selection function documented in detail in this paper to determine the X-ray luminosity function, and compare it with the luminosity function of the entire REFLEX sample. We also discuss morphological peculiarities of some of the sample members. The sample and some of the background data given in this introductory paper will be important for the application of these data in the detailed studies of cluster structure, to appear in forthcoming publications.Comment: 17 pages, 17 figures; to appear in A&A. A pdf version with full-quality figures can be found at ftp://ftp.xray.mpe.mpg.de/people/gwp/xmmlp/xmmlp.pd

    Quasi-stellar objects in the ALHAMBRA survey. I. Photometric redshift accuracy based on a 23 optical-NIR filter photometry

    Get PDF
    We characterize the ability of the ALHAMBRA survey to assign accurate photo-z's to BLAGN and QSOs based on their ALHAMBRA very-low-resolution optical-NIR spectroscopy. A sample of 170 spectroscopically identified BLAGN and QSOs have been used together with a library of templates (including SEDs from AGN, normal, starburst galaxies and stars) in order to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the spectroscopic sources over 2.5 deg^2 in different areas of the survey, all of them brighter than m678=23.5 (equivalent to r(SLOAN)~24.0). The derived photo-z accuracy is better than 1% and comparable to the most recent results in other cosmological fields. The fraction of outliers (~12%) is mainly caused by the larger photometric errors for the faintest sources and the intrinsic variability of the BLAGN/QSO population. A small fraction of outliers may have an incorrectly assigned spectroscopic redshift. The definition of the ALHAMBRA survey in terms of the number of filters, filter properties, area coverage and depth is able to provide photometric redshifts for BLAGN/QSOs with a precision similar to any previous survey that makes use of medium-band optical photometry. In agreement with previous literature results, our analysis also reveals that, in the 0<z<4 redshift interval, very accurate photo-z can be obtained without the use of near-IR broadband photometry at the expense of a slight increase of outliers. The NIR importance is expected to increase at higher redshifts (z>4). These results are relevant for the design of future optical follow-ups of surveys with a large fraction of BLAGN, as it is the case for X-rays or radio surveys.Comment: 17 pages, 12 figures. Accepted for publication in A&
    • …
    corecore