53 research outputs found
Short-wave infrared imaging enables high-contrast fluorescence-guided surgery in neuroblastoma
Fluorescence-guided surgery is set to play a pivotal role in the intraoperative management of pediatric tumors. Short-wave infrared imaging (SWIR) has advantages over conventional near-infrared I (NIR-I) imaging with reduced tissue scattering and autofluorescence. Here, two NIR-I dyes (IRDye800CW and IR12), with long tails emitting in the SWIR range, were conjugated with a clinical-grade anti-GD2 monoclonal antibody (Dinutuximab-beta) to compare NIR-I and SWIR imaging for neuroblastoma surgery. A first-of-its-kind multispectral NIR-I/SWIR fluorescence imaging device was constructed to allow an objective comparison between the two imaging windows. Conjugates were first characterized in vitro. Tissue-mimicking phantoms, imaging specimens of known geometric and material composition, were used to assess the sensitivity and depth penetration of the NIR-I/SWIR device, showing a minimum detectable volume of ~0.9 mm3 and depth penetration up to 3 mm. In vivo, fluorescence imaging using the NIR-I/SWIR device showed a high tumor-to-background ratio (TBR) for both dyes, with anti-GD2-IR800 being significantly brighter than anti-GD2-IR12. Crucially, the system enabled higher TBR at SWIR wavelengths than at NIR-I wavelengths, verifying SWIR imaging enables high-contrast delineation of tumor margins. This work demonstrates that by combining the high-specificity of anti-GD2 antibodies with the availability and translatability of existing NIR-I dyes, along with the advantages of SWIR in terms of depth and tumor signal-to-background ratio, GD2-targeted NIR-I/SWIR-guided surgery could improve the treatment of neuroblastoma patients, warranting investigation in future clinical trials
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
CE0401
Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.The objectives of this survey were to: 1). To assess the size of the herring stock in VIaS and VIIb using an EK60 scientific sounder and a 38 kHz mounted within the vessels drop keel. Observe fish marks along the survey track using 18, 120 and 200 kHz; 2). Collect biological data from herring samples within this area and determine
composition of marks using a single pelagic mid-water trawl
Short-wave infrared imaging enables high-contrast fluorescence-guided surgery in neuroblastoma
Fluorescence-guided surgery is set to play a pivotal role in the intraoperative management of pediatric tumors. Short-wave infrared imaging (SWIR) has advantages over conventional near-infrared I (NIR-I) imaging with reduced tissue scattering and autofluorescence. Here, two NIR-I dyes (IRDye800CW and IR12), with long tails emitting in the SWIR range, were conjugated with a clinical-grade anti-GD2 monoclonal antibody (Dinutuximab-beta) to compare NIR-I and SWIR imaging for neuroblastoma surgery. A first-of-its-kind multispectral NIR-I/SWIR fluorescence imaging device was constructed to allow an objective comparison between the two imaging windows. Conjugates were first characterized in vitro. Tissue-mimicking phantoms, imaging specimens of known geometric and material composition, were used to assess the sensitivity and depth penetration of the NIR-I/SWIR device, showing a minimum detectable volume of ~0.9 mm3 and depth penetration up to 3 mm. In vivo, fluorescence imaging using the NIR-I/SWIR device showed a high tumor-to-background ratio (TBR) for both dyes, with anti-GD2-IR800 being significantly brighter than anti-GD2-IR12. Crucially, the system enabled higher TBR at SWIR wavelengths than at NIR-I wavelengths, verifying SWIR imaging enables high-contrast delineation of tumor margins. This work demonstrates that by combining the high-specificity of anti-GD2 antibodies with the availability and translatability of existing NIR-I dyes, along with the advantages of SWIR in terms of depth and tumor signal-to-background ratio, GD2-targeted NIR-I/SWIR-guided surgery could improve the treatment of neuroblastoma patients, warranting investigation in future clinical trials
Aneurysm study of pipeline in an observational registry (ASPIRe)
International audienceBACKGROUND AND OBJECTIVE:Few prospective studies exist evaluating the safety and efficacy of the Pipeline Embolization Device (PED) in the treatment of intracranial aneurysms. The Aneurysm Study of Pipeline In an observational Registry (ASPIRe) study prospectively analyzed rates of complete aneurysm occlusion and neurologic adverse events following PED treatment of intracranial aneurysms.MATERIALS AND METHODS:We performed a multicenter study prospectively evaluating patients with unruptured intracranial aneurysms treated with PED. Primary outcomes included (1) spontaneous rupture of the Pipeline-treated aneurysm; (2) spontaneous nonaneurysmal intracranial hemorrhage (ICH); (3) acute ischemic stroke; (4) parent artery stenosis, and (5) permanent cranial neuropathy. Secondary endpoints were (1) treatment success and (2) morbidity and mortality at the 6-month follow-up. Vascular imaging was evaluated at an independent core laboratory.RESULTS:One hundred and ninety-one patients with 207 treated aneurysms were included in this registry. The mean aneurysm size was 14.5 ± 6.9 mm, and the median imaging follow-up was 7.8 months. Twenty-four aneurysms (11.6%) were small, 162 (78.3%) were large and 21 (10.1%) were giant. The median clinical follow-up time was 6.2 months. The neurological morbidity rate was 6.8% (13/191), and the neurological mortality rate was 1.6% (3/191). The combined neurological morbidity/mortality rate was 6.8% (13/191). The most common adverse events were ischemic stroke (4.7%, 9/191) and spontaneous ICH (3.7%, 7/191). The complete occlusion rate at the last follow-up was 74.8% (77/103).CONCLUSIONS:Our prospective postmarket study confirms that PED treatment of aneurysms in a heterogeneous patient population is safe with low rates of neurological morbidity and mortality. Patients with angiographic follow-up had complete occlusion rates of 75% at 8 months
- …