416 research outputs found
An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics
The numerical simulation of acoustic waves in complex 3D media is a key topic
in many branches of science, from exploration geophysics to non-destructive
testing and medical imaging. With the drastic increase in computing
capabilities this field has dramatically grown in the last twenty years.
However many 3D computations, especially at high frequency and/or long range,
are still far beyond current reach and force researchers to resort to
approximations, for example by working in 2D (plane strain) or by using a
paraxial approximation. This article presents and validates a numerical
technique based on an axisymmetric formulation of a spectral finite-element
method in the time domain for heterogeneous fluid-solid media. Taking advantage
of axisymmetry enables the study of relevant 3D configurations at a very
moderate computational cost. The axisymmetric spectral-element formulation is
first introduced, and validation tests are then performed. A typical
application of interest in ocean acoustics showing upslope propagation above a
dipping viscoelastic ocean bottom is then presented. The method correctly
models backscattered waves and explains the transmission losses discrepancies
pointed out in Jensen et al. (2007). Finally, a realistic application to a
double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical
Preface: Implementing project management principles in geosciences
Together with scientific creativity, good research project management is one
of the keys for a successful project. This special issue compiles a
collection of articles on several topics related to project management in
Earth sciences. It is an initiating step towards building a body of
literature in (geo)science project management in response to the need of
research project managers to share their daily work, experiences and
knowledge. It is composed of six original papers that present technical
tools, interpersonal skills and focused areas of practice (ocean and polar
sciences).</p
APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer
Programming as a soft skill for project managers: How to have a computer take over some of your work
Large part of the project manager's work can be described in terms of
retrieving, processing, analysing and synthesizing various types of data from
different sources. The types of information become more and more diverse
(including participants, task and financial details, and dates) and data
volumes continue to increase, especially for large international
collaborations. In this paper we explore the possibility of using the
python programming language as a tool for retrieving and processing
data for some project management tasks. python is a general-purpose
programming language with a very rich set of libraries. In recent years
python experienced explosive growth leading to development of
several libraries that help to efficiently solve many data related tasks
without very deep knowledge of programming in general and python in
particular. In this paper we present some of the core python
libraries that can be used to solve some typical project management tasks and
demonstrate several real-world applications using a HORIZON 2020 type
European project and as example.</p
Miscarriage following dengue virus 3 infection in the first six weeks of pregnancy of a dengue virus-naive traveller returning from Bali to Italy, April 2016
We report miscarriage following dengue virus (DENV)-3 infection in a pregnant woman returning from Bali to Italy in April 2016. On her arrival, the woman had fever, rash, asthenia and headache. DENV RNA was detected in plasma and urine samples collected the following day. Six days after symptom onset, she had a miscarriage. DENV RNA was detected in fetal material, but in utero fetal infection cannot be demonstrated due to possible contamination by maternal blood
Computer simulation of glioma growth and morphology
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion
On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities
We study a non-local variant of a diffuse interface model proposed by
Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical
species acting as nutrient. The system consists of a Cahn--Hilliard equation
coupled to a reaction-diffusion equation. For non-degenerate mobilities and
smooth potentials, we derive well-posedness results, which are the non-local
analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015).
Furthermore, we establish existence of weak solutions for the case of
degenerate mobilities and singular potentials, which serves to confine the
order parameter to its physically relevant interval. Due to the non-local
nature of the equations, under additional assumptions continuous dependence on
initial data can also be shown.Comment: 28 page
Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon
Author Posting. © IOP Publishing, 2012. This article is posted here by permission of IOP Publishing for personal use, not for redistribution. The definitive version was published in Physical Biology 9 (2012): 055005, doi:10.1088/1478-3975/9/5/055005.The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.This work was supported in part by
NINDS RO1 NS046810 and RO1 NS062184 (ELB), NIGMS
RO1 GM47368 (ELB), the Physical Sciences in Oncology
Center grant U54CA143837 (VC), NIGMS K12GM088021
(JP), and NSF IGERT DGE-0549500 (PES). ELB and VC
also received pilot project funds from the UNM Center for
Spatiotemporal modeling, funded by NIGMS, P50GM08273,
which also supported AC.2013-09-2
Argentina's Housing Market in the 2000s
In the last three decades, the supply of housing in Argentina has not kept pace with demand. This study analyzes the main drivers of Argentinas housing market and relates them to the macroeconomic environment in order to advance a policy agenda for housing policy reform. The demand for housing was calculated and tenure choice was analyzed. Structural characteristics affecting Argentinas housing market include the high concentration of the urban population in a few large metropolitan areas, the association of urban poverty with the housing deficit, and overcrowding. The mortgage market lost its appeal following the 2001-02 crisis due to widespread breaches of contract legitimized through protective legislation (still in place), insufficient long-term financing, and high inflation. The housing deficit could be eliminated in five to eight years if well-coordinated policy initiatives to develop the mortgage market and provide low-income housing were adopted under a decentralized, demand-driven, subsidized program
- …