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On a diffuse interface model for tumour growth with

non-local interactions and degenerate mobilities

Sergio Frigeri ∗ Kei Fong Lam † Elisabetta Rocca ‡

Abstract

We study a non-local variant of a diffuse interface model proposed by Hawkins–
Darrud et al. (2012) for tumour growth in the presence of a chemical species acting
as nutrient. The system consists of a Cahn–Hilliard equation coupled to a reaction-
diffusion equation. For non-degenerate mobilities and smooth potentials, we derive
well-posedness results, which are the non-local analogue of those obtained in Frigeri
et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak
solutions for the case of degenerate mobilities and singular potentials, which serves
to confine the order parameter to its physically relevant interval. Due to the non-
local nature of the equations, under additional assumptions continuous dependence
on initial data can also be shown.

Key words. Tumour growth, non-local Cahn–Hilliard equations, degenerate mobility,
singular potentials, weak solutions, well-posedness.

AMS subject classification. 35D30, 35K55, 35K65, 35K57, 35Q92.

1 Introduction

The tumour model of Hawkins–Darrud et al. [37] is a four-species model consisting of
tumour cells, healthy cells, nutrient rich and nutrient poor water. The model is further
simplified with the constraint that the total concentration of the cells and of the water
remain constant throughout the domain, which then leads to a two-phase model, composed
of a Cahn–Hilliard equation coupled to a reaction-diffusion equation. Denoting by ϕ the
difference in volume fractions between the tumour cells and the healthy cells, and by σ

the concentration of the nutrient rich water (which we will simply denote as the nutrient),
the model equations are (see also [34, §2.5.2])

ϕt = div (m(ϕ)∇µ) + P (ϕ)(σ + χ(1 −ϕ) − µ), (1.1a)

µ = AΨ′(ϕ) −B∆ϕ − χσ, (1.1b)

σt = div (n(ϕ)∇(σ + χ(1 −ϕ))) −P (ϕ)(σ + χ(1 − ϕ) − µ), (1.1c)

wherem(ϕ), n(ϕ) are mobilities for ϕ and σ, respectively, Ψ′ is the derivative of a potential
Ψ with equal minima at ±1, A and B are positive constants related to the surface tension
and interfacial thickness, P (ϕ) is a non-negative function with the source terms P (ϕ)(σ+
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χ(1 − ϕ) − µ) motivated from linear phenomenological laws for chemical reactions, and
χ ≥ 0 is a parameter that models transport mechanisms such as chemotaxis and active
transport, see [34] for more details. Note that when χ ≠ 0, we observe that the terms
div (n(ϕ)∇(χϕ)) in (1.1c) and div (m(ϕ)∇(χσ)) in (1.1a) (after substituting (1.1b) into
(1.1a)) are of cross-diffusion-type.

Associated to (1.1) is the free energy

E(ϕ,σ) ∶= ∫
Ω
AΨ(ϕ) + B

2
∣∇ϕ∣2 + 1

2
∣σ∣2 + χσ(1 − ϕ)dx ,

where in a bounded domain Ω ⊂ R3, the first two terms form the well-known Ginzburg–
Landau energy, leading to phase separation and surface tension effects. In contrast, it is
not expected that the nutrient rich and nutrient poor water experience separation akin
to that of the cells, and thus the nutrient free energy, modelled by the third and fourth
terms, only consists of terms modelling diffusion and interactions with the cells.

In terms of the analysis for (1.1), the well-posedness of weak and strong solutions with
constant mobilities m(ϕ) = n(ϕ) = 1 and χ = 0, and the existence of a global attractor
have been established in [25] for a large class of nonlinearities Ψ and P . A viscosity
regularized version of (1.1) (with constant mobilities and χ = 0) has been the subject of
study in [10], where existence and uniqueness of weak solutions and long time behavior
are shown for singular potentials Ψ. Furthermore, for regular quartic potentials, the weak
solutions to the viscosity regularized model converge to the model studied in [25] as the
viscosity parameter tends to zero. Further investigation in obtaining convergence rates
with singular potentials have been initiated in the works of [11, 12]. For the case χ ≠ 0,
we refer the reader to [29, 30, 31, 32, 40] for results concerning existence to similar Cahn–
Hilliard systems.

In this work, we study a non-local variant of (1.1), where we replace the Ginzburg–
Landau component in E by a non-local free energy

∫
Ω
∫
Ω

B

4
J(x − y)(ϕ(x) − ϕ(y))2 dx dy + ∫

Ω
AΨ(ϕ)dx ,

where J is a symmetric kernel defined on Ω×Ω. Then, the non-local variant of (1.1) reads
as

ϕt = div (m(ϕ)∇µ) +P (ϕ)(σ + χ(1 − ϕ) − µ) in Ω × (0, T ) =∶ QT , (1.2a)

µ = AΨ′(ϕ) +Baϕ −BJ ⋆ ϕ − χσ in QT , (1.2b)

σt = div (n(ϕ)∇(σ + χ(1 − ϕ))) − P (ϕ)(σ + χ(1 −ϕ) − µ) in QT , (1.2c)

with

a(x) ∶= ∫
Ω
J(x − y)dy , (J ⋆ϕ)(x, t) ∶= ∫

Ω
J(x − y)ϕ(y, t)dy .

We complement (1.2) with the initial and boundary conditions

ϕ(0) = ϕ0, σ(0) = σ0 in Ω, ∂νϕ = ∂νµ = ∂νσ = 0 on ∂Ω × (0, T ), (1.3)

where ∂νf ∶= ∇f ⋅ ν with outer unit normal ν on ∂Ω.
In biological models, non-local interactions have been used to describe competition

for space and degradation [47], spatial redistribution [4, 41], and also cell-to-cell adhesion
[1, 6, 35]. The model (1.2) which we study falls roughly to the category of non-local cell-
to-cell adhesion, as it is well-known that the Ginzburg–Landau energy leads to separation
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and surface tension effects, and heuristically this corresponds to the preference of tumour
cells to adhere to each other rather than to the healthy cells.

The non-local Cahn–Hilliard equation has been studied intensively by many authors,
see for example [2, 3, 26, 27, 28]. There has also been some focus towards coupling
with fluid equations, such as Brinkman and Hele–Shaw flows [17] or Navier–Stokes flow
[9, 20, 22, 21, 23, 24]. For the non-local Cahn–Hilliard equation with source terms, analytic
results such as well-posedness and long-time behavior have been obtained in [16, 42] for
prescribed source terms or Lipschitz source terms depending on the order parameter. Our
present contribution aims to extend the study of the non-local Cahn–Hilliard equation to
the case where source terms are coupled with other variables.

Our first result concerns the well-posedness of (1.2) with non-degenerate mobilities
and regular potentials, which is summarized in Theorems 2.1 and 2.2 below. Due to the
non-local nature of the equations, the regularities of the weak solutions we obtain are
lower than the solutions to the local model studied in [25]. Often in the modelling and
in numerical simulations, it is advantageous to consider a singular potential Ψ, which
enforces the range of the order parameter ϕ to lie in the physically relevant interval [−1,1]
or (−1,1). One example is the classical logarithmic potential:

Ψlog(ϕ) = θ

2
((1 +ϕ) log(1 +ϕ) + (1 − ϕ) log(1 −ϕ)) − θc

2
ϕ2,

for constants 0 < θ < θc. Furthermore, depending on the application in mind, a mobility
m(ϕ) that is degenerate at ϕ = ±1 is often considered alongside singular potentials, for
example m(ϕ) = (1 − ϕ2) [18, 44, 45]. The degeneracy of the mobility at ±1 effectively
restricts the diffusive mechanisms from the Cahn–Hilliard system to the interfacial region.

In the models of [7, 13, 14, 19, 48] a one-side mobility m1(ϕ) = (1+ϕ)+ =max(1+ϕ,0)
is employed so that the Cahn–Hilliard diffusive mechanisms is switched off in the region
of healthy cells {ϕ = −1}, and the tumour cells are allowed to diffuse. However, there the
models are formulated with smooth potentials, and it is not known if the models with
a one-sided mobility can be analytically investigated. To the authors’ best knowledge,
the analytical results concerning local Cahn–Hilliard systems with source terms derived in
[8, 10, 15, 25, 29, 30, 31, 32, 39, 40, 43] consider positive or constant mobilities. Due to the
degeneracy of the mobility m, the gradient ∇µ is no longer controlled in some Lebesgue
space, and thus the equation for ϕ have to be reformulated into a form where µ does not
appear. In the local setting the main effort lies in deriving high order estimates for ϕ,
which may not be controlled uniformly in a suitable approximation scheme when source
terms involving ϕ and other variables are present.

For our present non-local setting, substituting (1.2b) into (1.2a) and (1.2c) leads to a
formulation of (1.2) in which µ does not appear:

ϕt = div (Am(ϕ)Ψ′′(ϕ)∇ϕ +m(ϕ)∇ (Baϕ −BJ ⋆ϕ − χσ))
+P (ϕ)(σ + χ(1 − ϕ)) − P (ϕ) (AΨ′(ϕ) +Baϕ −BJ ⋆ϕ − χσ) in QT ,

σt = div (n(ϕ)∇(σ + χ(1 −ϕ)))
−P (ϕ)(σ + χ(1 − ϕ)) + P (ϕ) (AΨ′(ϕ) +Baϕ −BJ ⋆ϕ − χσ) in QT .

Using the method introduced by Elliott and Garcke in [18] for the Cahn–Hilliard equation
with degenerate mobilities, our second main result concerns the existence of weak solutions
to (1.2) where the mobility m(ϕ) is degenerate at ϕ = ±1 and the potential Ψ ∶ (−1,1) → R

is singular. This is given in Theorem 2.3. Let us point out that we encounter new
difficulties in the analysis of the source terms, namely the product P (ϕ)Ψ′(ϕ). For singular
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potentials, Ψ′(s) becomes unbounded as s → ±1. Hence, to suitably control the product
PΨ′, we consider functions P (s) that decay to zero as s → ±1 in such a way that the
product PΨ′ remains bounded. In the original model of [37], P takes the form P (s) =(1 + s)+ = max(1 + s,0) (see [34, §2.5.2] for more details) so that the source terms are
active only in the tumour region {ϕ = 1} and are not active in the healthy cell region{ϕ = −1}. But in the work of [38] the function P is chosen to be a multiple of the potential
Ψ (see also [34, §3.3.2]), which is degenerate at ±1. The effect of the latter choice acts in a
similar manner to a two-sided degenerate mobility and restricts the influence of the source
terms to the interfacial layer. This effect of localizing the source terms in the interfacial
layers is supported by formally matched asymptotic analysis performed in [34, 38]. We
also refer the reader to [33] for numerical simulations with a two-sided degenerate P in
the multi-component setting.

In contrast to the local version, where uniqueness of solutions to the Cahn–Hilliard
equation with degenerate mobilities is still an open question, in the non-local case with
degenerate mobilities we can derive a result concerning continuous dependence on initial
data when χ = 0. This is given in Theorem 2.4, and can be attributed to the fact that the
non-local model is akin to a coupled system of second-order equations. We point out that
we have to restrict to the case χ = 0 as the regularity of the variable σ for the degenerate
case seems not to be sufficient to control the difference of certain terms.

The remainder of this paper is organized as follows: The assumptions and main results
are summarized in Section 2. In Section 3 we establish existence, regularity and continuous
dependence on initial data for weak solutions of (1.2) with non-degenerate mobilities and
regular potentials. Then, by an approximation procedure, the existence of weak solutions
to the system with degenerate mobilities and singular potentials is treated in Section 4,
and the continuous dependence on initial data is shown when χ = 0.

Notation. We set H ∶= L2(Ω), V ∶= H1(Ω). For a (real) Banach space X its dual is
denoted as X ′ and ⟨⋅, ⋅⟩X denotes the duality pairing between X and X ′. The L2-inner
product will be denoted by (⋅, ⋅). For convenience, we use the notation Lp ∶= Lp(Ω) and
W k,p ∶= W k,p(Ω) for any p ∈ [1,∞], k > 0 to denote the standard Lebesgue spaces and
Sobolev spaces equipped with the norms ∥ ⋅ ∥Lp and ∥ ⋅ ∥W k,p . In the case p = 2 we use
notation ∥ ⋅ ∥H ∶= ∥ ⋅ ∥L2 and ∥ ⋅ ∥V ∶= ∥ ⋅ ∥H1 .

Useful preliminaries. We recall the following useful inequalities:

• Young’s inequality for convolutions: For p, q, r ≥ 1 real numbers with 1 + 1
r
= 1

p
+ 1

q
,

∥f ⋆ g∥Lr ≤ ∥f∥Lp∥g∥Lq .

• The Gagliardo–Nirenberg interpolation inequality in dimension d: Let Ω be a Lip-
schitz bounded domain and f ∈ Wm,r(Ω) ∩ Lq(Ω), m ∈ N, 1 ≤ q, r ≤ ∞. For any
integer j, 0 ≤ j <m, suppose there is α ∈ R such that

1

p
= j

d
+ (1

r
−
m

d
)α + 1 − α

q
,

j

m
≤ α ≤ 1.

If r ∈ (0,∞) and m − j − d
r
is a non-negative integer, then we additionally assume

α ≠ 1. Under these assumptions, there exists a positive constant C depending only
on Ω, m, j, q, r, and α such that

∥Djf∥Lp(Ω) ≤ C∥f∥αWm,r(Ω)∥f∥1−αLq(Ω). (1.5)
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For the Hilbert triplet (V,H,V ′) we introduce the Riesz isomorphism N ∶ V → V ′

associated to the standard scalar product of V ,

⟨N v,w⟩V = ∫
Ω
∇v ⋅ ∇w + vw dx ∀v,w ∈ V. (1.6)

For u ∈ D(N ) ∶= {f ∈H2(Ω) ∶ ∂νf = 0 on ∂Ω}, we have Nu = −∆u + u, and the restriction
of N to D(N ) is an isomorphism from D(N ) to H. By the classical spectral theorem,
there exists a sequence of eigenvalues λj with 0 < λ1 ≤ λ2 ≤ ⋯ and λj → ∞, and a family
of eigenfunctions wj ∈ D(N ) such that Nwj = λjwj which forms an orthonormal basis in
H and an orthogonal basis in V . Note that the first eigenfunction w1 is a constant, and
hence λ1 = 1. Furthermore, the inverse operator N −1 ∶ V ′ → V satisfies

⟨Nu,N −1f⟩V = ⟨f,u⟩V , ∥N −1f∥V ≤ ∥f∥V ′ , d

dt
∥g∥2V ′ = 2⟨gt,N −1g⟩V , (1.7)

for all u ∈ V , f ∈ V ′ and g ∈ H1(0, T ;V ′). We will denote D(N −1) as the dual space of
D(N ).
2 General assumptions and main results

In this section we state the main results on existence, regularity, uniqueness, and continu-
ous dependence of solutions to (1.2)-(1.3) first for the case with non-degenerate mobilities
and regular potentials and then for the case of degenerate mobilities and singular po-
tentials. The results are stated for dimension d = 3, but similar results also holds for
d = 1,2.

2.1 Non-degenerate mobilities and regular potentials

Assumption 2.1.

(A1) m ∈ C0(R) and there exist constants m1, m2 > 0 such that

m1 ≤m(s) ≤m2 ∀s ∈ R.
(A2) n ∈ C0(R) and there exist constants n1, n2 > 0 such that

n1 ≤ n(s) ≤ n2 ∀s ∈ R.

(A3) J ∈W 1,1
loc
(Rd) satisfies
J(z) = J(−z), a(x) ∶= ∫

Ω
J(x − y)dy ≥ 0 a.e. in Ω,

a∗ ∶= sup
x∈Ω
∫
Ω
∣J(x − y)∣ dy <∞, b ∶= sup

x∈Ω
∫
Ω
∣∇J(x − y)∣ dy <∞.

(A4) Ψ ∈ C2(R) and there exists c0 > χ2 ≥ 0 such that

AΨ′′(s) +Ba(x) ≥ c0 ∀s ∈ R,a.e. x ∈ Ω.
(A5) There exists c1 ∈ R and

c2 > 1

2A
(B(a∗ − a∗) + χ2) , (2.1)

such that

Ψ(s) ≥ c2 ∣s∣2 − c1 ∀s ∈ R, where a∗ ∶= inf
x∈Ω∫Ω J(x − y)dy .
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(A6) There exists z ∈ (1,2], c3 > 0 and c4 ≥ 0 such that

∣Ψ′(s)∣z ≤ c3Ψ(s) + c4 ∀s ∈ R.
(A7) P ∈ C0(R) and there exists c5 > 0 such that

0 ≤ P (s) ≤ c5 (1 + ∣s∣q) ∀s ∈ R, q ∈ [1, 10
3
) .

(A8) ϕ0 ∈H satisfies Ψ(ϕ0) ∈ L1 and σ0 ∈H.

The assumption (A4) imposes the condition that the potential Ψ has to have at least
quadratic polynomial growth, and will be essential in the identification of certain limit
solutions. We also mention that (A7) is in stark contrast with the growth assumption for
P (⋅) made in [25], where the authors are able to consider polynomial growth up to but not
including ninth order. The reason for an upper bound of 10

3
in the current setting can be

seen from the regularity for ϕ, where in the non-local case one obtains ϕ ∈ L∞(0, T ;H) ∩
L2(0, T ;V ), and in the local case one obtains ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3). The lower
regularity for ϕ in the non-local case means that we only obtain compactness for the
Galerkin approximations of ϕ in L2(0, T ;Lr) for r < 6, which in turn limits the growth
assumptions on P .

Definition 2.1. We call a pair (ϕ,σ) a weak solution to (1.2)-(1.3) on [0, T ] if
ϕ ∈ L∞(0, T ;H) ∩L2(0, T ;V ) ∩W 1,r(0, T ;D(N −1)),
σ ∈ L∞(0, T ;H) ∩L2(0, T ;V ) ∩W 1,r(0, T ;D(N −1)),
µ ∶= Baϕ −BJ ⋆ϕ +AΨ′(ϕ) − χσ ∈ L2(0, T ;V ),

for some r > 1, and the following variational formulation is satisfied for a.e. t ∈ (0, T ) and
for ζ ∈D(N ),

0 = ⟨ϕt, ζ⟩D(N) + (m(ϕ)∇µ,∇ζ) − (P (ϕ)(σ + χ(1 − ϕ) − µ), ζ), (2.2a)

0 = ⟨σt, ζ⟩D(N) + (n(ϕ)∇(σ + χ(1 −ϕ)),∇ζ) + (P (ϕ)(σ + χ(1 − ϕ) − µ), ζ), (2.2b)

together with

ϕ(0) = ϕ0, σ(0) = σ0.
Notice that the regularity properties of a weak solution entail that we have ϕ,σ ∈

Cw([0, T ];H)∩C0([0, T ];V ′), where Cw([0, T ];H) denotes the space of weakly continuous
functions on [0, T ] with values in the spaceH. Therefore, the initial conditions make sense.

Theorem 2.1 (Existence and energy inequality). Under Assumption 2.1, there exists a

weak solution pair (ϕ,σ) to (1.2) in the sense of Definition 2.1 which satisfies, for all

t > 0, the following energy inequality

E(ϕ(t), σ(t)) + ∥√m(ϕ)∇µ∥2L2(0,t;H) + ∥√n(ϕ)∇(σ + χ(1 −ϕ))∥2L2(0,t;H)

+ ∥√P (ϕ)(σ + χ(1 − ϕ) − µ)∥2L2(0,t;H) ≤ E(ϕ0, σ0), (2.3)

where

E(ϕ,σ) = ∫
Ω
AΨ(ϕ) + B

2
a(x) ∣ϕ∣2 − B

2
ϕ(J ⋆ϕ) + 1

2
∣σ∣2 + χσ(1 − ϕ)dx . (2.4)

Furthermore, if (A7) is satisfied with q ≤ 4
3
then it holds that

ϕt, σt ∈ L2(0, T ;V ′), ϕ,σ ∈ C0([0, T ];H), ϕ(0) = ϕ0, σ(0) = σ0 a.e. in Ω,

and the energy inequality (2.3) becomes an equality, for all t > 0.
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To show continuous dependence on initial data, we make the following assumptions.

Assumption 2.2.

(B1) m = n = 1.
(B2) P ∈ C0,1(R) ∩L∞(R).
(B3) In addition to (A4), Ψ also satisfies

∣Ψ′(s1) −Ψ′(s2)∣ ≤ c6 (1 + ∣s1∣r + ∣s2∣r) ∣s1 − s2∣ ∀s1, s2 ∈ R
for some c6 > 0 and r ∈ [0, 4

3
].

Under (B2) we see that ϕt, σt ∈ L2(0, T ;V ′).
Theorem 2.2 (Continuous dependence for constant mobilities). Let (ϕi, σi)i=1,2 denote

two weak solution pairs to (1.2) with J satisfying (A3), Ψ satisfying (B3), mobilities m, n

and nonlinearity P satisfying Assumption 2.2, corresponding to initial data (ϕ0,i, σ0,i)i=1,2
satisfying (A8). Then there exists a positive constant C, depending on A, B, a∗, ∥J∥W 1,1 ,

c0, χ, c6, ∥σi∥L2(0,T ;V ), ∥µi∥L2(0,T ;V ), ∥ϕi∥L∞(0,T ;H), ∥ϕi∥L2(0,T ;V ) and Ω such that for all

t ∈ (0, T ],
∥ϕ1(t) −ϕ2(t)∥2V ′ + ∥σ1(t) − σ2(t)∥2V ′ + ∥ϕ1 −ϕ2∥2L2(0,t;H) + ∥σ1 − σ2∥2L2(0,t;H)

≤ C (∥ϕ1,0 −ϕ2,0∥2V ′ + ∥σ1,0 − σ2,0∥2V ′) . (2.5)

Furthermore, if r ≤ 2
3
in (B3) then it holds that for all t ∈ (0, T ],

∥µ1 − µ2∥2L2(0,t;V ′) ≤ C (∥ϕ1,0 − ϕ2,0∥2V ′ + ∥σ1,0 − σ2,0∥2V ′) . (2.6)

2.2 Degenerate mobilities and singular potentials

We now consider the case where the mobility m ∶ [−1,1] → [0,∞) can be degenerate at ±1,
the potential Ψ is singular and defined in (−1,1). The entropy function M ∶ (−1,1) → R

associated to the mobility m is given by

m(s)M ′′(s) = 1, M(0) = 0, M ′(0) = 0.
Assumption 2.3.

(C1) The potential Ψ can be decomposed into Ψ = Ψ1 + Ψ2 with a regular part Ψ2 ∈
C2([−1,1]) and a singular part Ψ1 ∈ C2(−1,1).

(C2) There exists ε0 > 0 such that Ψ′′1 is non-decreasing in [1 − ε0,1) and non-increasing

in (−1,−1 + ε0].
(C3) There exists c0 > χ2 ≥ 0 such that

AΨ′′(s) +Ba(x) ≥ c0 ∀s ∈ (−1,1), a.e. x ∈ Ω.

(C4) m ∈ C0([−1,1]) with
m(s) ≥ 0 ∀s ∈ [−1,1], m(s) = 0 iff s = ±1, mΨ′′ ∈ C0([−1,1]),

and there exists ε0 ∈ (0,1] such that m is non-increasing in [1 − ε0,1] and non-

decreasing in [−1,−1 + ε0].
7



(C5) P ∈ C0([−1,1]), P ≥ 0, and there exist a positive constant c7 and ε0 > 0 such that√
P (s) ≤ c7 m(s) ∀s ∈ [−1,−1 + ε0] ∪ [1 − ε0,1], PΨ′ ∈ C0([−1,1]).

(C6) ϕ0 ∈H satisfies ∥ϕ0∥L∞(Ω) ≤ 1, M(ϕ0) ∈ L1 and σ0 ∈H.

Remark 2.1. (1) By (C4), there exists a positive constant C such that ∣m(s)Ψ′′(s)∣ ≤ C
for all s ∈ [−1,1], which in turn implies that ∣Ψ′′(s)∣ ≤ CM ′′(s) for all s ∈ (−1,1). Upon

integrating from 0 to s ∈ (0,1), and also from s ∈ (−1,0) to 0, applying the fundamental

theorem of calculus and the conditions M(0) =M ′(0) = 0 yields

∣Ψ(s)∣ ≤ ∣Ψ(0)∣ + ∣Ψ′(0)∣ ∣s∣ +CM(s) ∀s ∈ (−1,1),
and as a consequence of M(ϕ0) ∈ L1 we have Ψ(ϕ0) ∈ L1.

(2) The assumption (C5) yields the following observations: P is bounded in [−1,1]
and thus (A7) is automatically satisfied, and P (s) = 0 if and only if s = ±1.

The degenerate mobility implies that the gradient of the chemical potential µ can no
longer be controlled in some Lp space. Thus, we reformulate the definition of the weak
solution so that µ does not appear (cf. [18, Thm. 1]).

Definition 2.2. We call a pair (ϕ,σ) a weak solution to (1.2)-(1.3) on [0, T ] if
ϕ,σ ∈ L∞(0, T ;H) ∩L2(0, T ;V ) ∩H1(0, T ;V ′),

with ϕ ∈ L∞(QT ), ∣ϕ(x, t)∣ ≤ 1 a.e. in QT ,

such that for a.e. t ∈ (0, T ) and ζ ∈ V ,

0 = ⟨ϕt, ζ⟩V + (m(ϕ)(AΨ′′(ϕ) +Ba)∇ϕ,∇ζ)
+ (m(ϕ)(Bϕ∇a −B∇(J ⋆ϕ) − χ∇σ),∇ζ)
− (P (ϕ)((1 + χ)σ + χ(1 − ϕ) −AΨ′(ϕ) −Baϕ +BJ ⋆ϕ), ζ), (2.7a)

0 = ⟨σt, ζ⟩V + (n(ϕ)∇(σ + χ(1 − ϕ)),∇ζ)
+ (P (ϕ)((1 + χ)σ + χ(1 − ϕ) −AΨ′(ϕ) −Baϕ +BJ ⋆ϕ), ζ), (2.7b)

together with ϕ(0) = ϕ0 and σ(0) = σ0.
Theorem 2.3 (Existence). Under Assumption 2.3, (A2), and (A3), there exists a weak

solution pair (ϕ,σ) to (1.2) in the sense of Definition 2.2 such that ϕ(0) = ϕ0, σ(0) = σ0
in H.

The initial conditions are attained as equalities in H due to the continuous embedding

L2(0, T ;V ) ∩H1(0, T ;V ′) ⊂ C0([0, T ];H).
We now state the result regarding the continuous dependence of solutions on initial data.

Assumption 2.4.

(D1) n = 1, m ∈ C0,1([−1,1]), and χ = 0.
(D2) There exists some constants c8 > 0 and ρ ∈ [0,1) such that

ρΨ′′1(s) +Ψ′′2(s) + a(x) ≥ 0 ∀s ∈ (−1,1), a.e. x in Ω,

m(s)Ψ′′1(s) ≥ c8 ∀s ∈ [−1,1].
8



(D3) The nonlinearity P satisfies P,PΨ′ ∈ C0,1([−1,1]).
We point out that we have to exclude the effects of chemotaxis for the continuous

dependence result, as the regularity for σ stated in Theorem 2.3 seems not to be sufficient
at handling the differences involving the term m(ϕ)χ∇σ in (2.7).

Theorem 2.4 (Continuous dependence on initial data). Let (ϕi, σi)i=1,2 denote two so-

lution pairs to (1.2) in the sense of Definition 2.2 with J satisfying (A3), the potential Ψ,

the mobilities m, n and nonlinearity P satisfying Assumptions 2.3 and 2.4, corresponding

to initial data (ϕ0,i, σ0,i)i=1,2 satisfying (C6). Then there exists a positive constant C,

depending on A, B, a∗, b, ∥J∥W 1,1 , c8, ρ, ∥σi∥L2(0,T ;V ), and ∥ϕi∥L2(0,T ;V ) such that for all

t ∈ (0, T ],
∥ϕ1(t) −ϕ2(t)∥2V ′ + ∥σ1(t) − σ2(t)∥2V ′ + ∥ϕ1 −ϕ2∥2L2(0,t;H) + ∥σ1 − σ2∥2L2(0,t;H)

≤ C (∥ϕ1,0 −ϕ2,0∥2V ′ + ∥σ1,0 − σ2,0∥2V ′) . (2.8)

3 Non-degenerate mobility and regular potential

3.1 Existence

The proof is carried out by means of a Faedo-Galerkin approximation scheme, assuming
at first that ϕ0 ∈ D(N ). The general case ϕ0 ∈ H with Ψ(ϕ0) ∈ L1(Ω) can be handled by
means of a density argument and by relying on the fact that Ψ is a quadratic perturbation
of a convex function (see [9]). Let {wj}j∈N denote the set of eigenfunctions of the operator
N introduced in (1.6), which forms an orthonormal basis in H and an orthogonal basis
in V . The finite dimensional subspace spanned by the first n eigenfunctions is denoted
by Wn, and the projection operator to Wn is denoted by Πn. For n ∈ N fixed, we look for
functions of the form

ϕn(t) = n

∑
k=1

ank(t)wk, µn(t) = n

∑
k=1

bnk(t)wk, σn(t) = n

∑
k=1

cnk(t)wk

that solves the following approximating problem (with prime denoting derivatives with
respect to time)

0 = (ϕ′n, ζ) + (m(ϕn)∇µn,∇ζ) − (Sn, ζ), (3.1a)

0 = (σ′n, ζ) + (n(ϕn)∇(σn + χ(1 − ϕn)),∇ζ) + (Sn, ζ), (3.1b)

µn = Πn (AΨ′(ϕn) +Baϕn −BJ ⋆ϕn − χσn) , (3.1c)

Sn = P (ϕn)(σn + χ(1 − ϕn) − µn), (3.1d)

ϕn(0) = Πn(ϕ0), σn(0) = Πn(σ0), (3.1e)

for every ζ ∈ Wn. Substituting (3.1c) into (3.1a) and (3.1b) leads to a Cauchy problem
for a system of ordinary differential equations in the 2n unknowns ank and cnk . Continuity
of Ψ′, m, n and P ensures via the Cauchy–Peano theorem that there exists tn ∈ (0,+∞]
such that (3.1) has a solution a

n = (an1 , . . . , ann), cn = (cn1 , . . . , cnn) on [0, tn) with a
n
n,c

n
n ∈

C1([0, tn);Rn). This in turn yields that ϕn, σn ∈ C1([0, tn);Wn), and defining µn via
(3.1c) yields that µn ∈ C1([0, tn);Wn). We will now derive a number of a priori estimates,
with the symbol C denoting positive constants that may vary line to line, but do not
depend on n and T . Positive constants that are independent on n but depend on T will
be denoted by CT .

9



3.1.1 A priori estimates

Substituting ζ = µn in (3.1a), ζ = σn + χ(1 − ϕn) in (3.1b), and testing (3.1c) with ϕ′n,
adding the resulting identities together leads to

d

dt
En + ∥√m(ϕn)∇µn∥2H + ∥√n(ϕn)∇(σn + χ(1 −ϕn))∥2H
+ ∥√P (ϕn)(σn + χ(1 −ϕn) − µn)∥2H = 0

(3.2)

where

En ∶= ∫
Ω
AΨ(ϕn) + B

2
a(x) ∣ϕn∣2 − B

2
ϕn(J ⋆ϕn) + 1

2
∣σn∣2 + χσn(1 − ϕn)dx .

In the above, by the symmetry of J , we have used (suppressing the t-dependence of ϕn)

d

dt

1

4
∫
Ω
∫
Ω
J(x − y)(ϕn(x) − ϕn(y))2 dx dy

= ∫
Ω
(a(x)ϕn(x) − (J ⋆ ϕn)(x))ϕ′n(x)dx

= 1

2

d

dt
∫
Ω
a(x) ∣ϕn(x)∣2 − ϕn(x)(J ⋆ ϕn)(x)dx .

Then, by Young’s inequality, Young’s inequality for convolutions and (A5) we obtain

En = ∫
Ω
AΨ(ϕn) + χσn(1 −ϕn)dx + 1

2
∥σn∥2H + B

2
∥√aϕn∥2H − B

2
(ϕn, J ⋆ϕn)

≥ 1

2
∥σn∥2H + (Ac2 + a∗B2 )∥ϕn∥2H −Ac1 ∣Ω∣ − χ∥σn∥H (∣Ω∣ 12 + ∥ϕn∥H)
−
B

2
∥ϕn∥H∥J ⋆ϕn∥H

≥ η∥σn∥2H − χ ∣Ω∣ 12 ∥σn∥H + (− χ2

2(1 − 2η) +Ac2 + (a∗ − a∗)
B

2
) ∥ϕn∥2H −Ac1 ∣Ω∣

≥ η0∥σn∥2H + γ0∥ϕn∥2H −C,

(3.3)

where η = η0 ∈ (0,1/2) is fixed such that the coefficient of ∥ϕn∥H is positive (this can be
done thanks to (2.1)). Moreover, γ0 is a positive constant depending on η0. Furthermore,
by (A3) and (A8), the initial energy is bounded:

∣E0∣ ≤ A∥Ψ(ϕ0)∥L1 + (Ba∗ + χ2)∥ϕ0∥2H + ∥σ0∥2H + χ2 ∣Ω∣ .
Notice that, since ϕ0 ∈ D(N ), then we have ϕn(0) → ϕ0 in D(N ) ⊂ L∞(Ω), and hence
the sequence of ∥Ψ(ϕn(0))∥L1 is controlled by ∥Ψ(ϕ0)∥L1 . Thus, integrating (3.2) from 0
to t, and the lower bound (3.3) leads to

∥σn(t)∥2H + ∥ϕn(t)∥2H + ∥√m(ϕn)∇µn∥2L2(0,t;H)

+ ∥√n(ϕn)∇(σn + χ(1 −ϕn))∥2L2(0,t;H) + ∥√P (ϕn)(σn + χ(1 −ϕn) − µn)∥2L2(0,t;H)

≤ C (1 + ∥ϕ0∥2H + ∥Ψ(ϕ0)∥L1 + ∥σ0∥2H) .
(3.4)

This estimate yields that tn = +∞ for every n ∈ N and thus we can extend the Galerkin
functions ϕn, µn, σn to the interval [0,+∞). From the first line of (3.3) it holds that

∫
Ω
AΨ(ϕn)dx ≤ En +

1

2
∥σn∥2H +Ba∗∥ϕn∥2H + χ∥σn∥H (∣Ω∣12 + ∥ϕn∥H)

≤ ∣E0∣ + 1

2
∥σn∥2H +Ba∗∥ϕn∥2H + χ∥σn∥H (∣Ω∣ 12 + ∥ϕn∥H) .
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Thus, using the boundedness of ϕn and σn in L∞(0, T ;H) for 0 < T <∞, we obtain that

∥Ψ(ϕn)∥L∞(0,T ;L1) ≤ C ∀0 < T <∞. (3.5)

Furthermore, from (A6) we see that

∥Ψ′(ϕn)∥zL∞(0,T ;Lz) ≤ c3∥Ψ(ϕn)∥L∞(0,T ;L1) + c4 ∣Ω∣ ≤ C ∀0 < T <∞. (3.6)

Using Fubini’s theorem and the symmetry of J , we have the relation

(J ⋆ϕn,1) = ∫
Ω
∫
Ω
J(y − x)ϕn(y)dx dy = (aϕn,1),

and so, upon integrating (3.1c) over Ω and applying (A6), (3.4) and (3.5), we have

∣∫
Ω
µn dx ∣ = ∣∫

Ω
AΨ′(ϕn) − χσn dx ∣ ≤ ∫

Ω
A ∣Ψ′(ϕn)∣ + χ ∣σn∣ dx

≤ Ac3∥Ψ(ϕn)∥L1 +Ac4 ∣Ω∣ +C∥σn∥H ≤ C.
The mean of µn is bounded uniformly in L∞(0, T ) and together with the uniform bound-
edness of ∇µn in L2(0, T ;H) and the Poincaré inequality, we infer that

∥µn∥2L2(0,T ;L2) ≤ C∥∇µn∥2L2(0,T ;L2) +CT

and so

∥µn∥L2(0,T ;V ) ≤ CT ∀0 < T <∞. (3.7)

Multiplying (3.1c) with −∆ϕn, integrating over Ω and applying integration by parts gives

(∇µn,∇ϕn) = (∇ϕn,Ba∇ϕn +Bϕn∇a +AΨ
′′(ϕn)∇ϕn −B∇J ⋆ ϕn − χ∇σn)

= (∇ϕn, (AΨ′′(ϕn) +Ba − χ2)∇ϕn +Bϕn∇a −B∇J ⋆ ϕn − χ∇(σn − χϕn))
≥ (c0 − χ2)∥∇ϕn∥2H − ∥∇ϕn∥H∥Bϕn∇a −B∇J ⋆ϕn − χ∇(σn + χ(1 −ϕn))∥H ,

where we have used (A4), and in particular, recall that c0 > χ2. By Young’s inequality for
convolutions, we have that

∥∇J ⋆ ϕn∥H ≤ b∥ϕn∥H , ∥ϕn∇a∥H = (∫
Ω
∣ϕn∣2 ∣∇(J ⋆ 1)∣2 dx) 1

2 ≤ b∥ϕn∥H ,

and so we obtain for some positive constant C depending on B, χ and b,

∥∇µn∥H∥∇ϕn∥H ≥ (∇µn,∇ϕn)
≥ (c0 − χ2)∥∇ϕn∥2H −C∥∇ϕn∥H (∥ϕn∥H + ∥∇(σn + χ(1 − ϕn))∥H) ,

which in turn leads to

∥∇ϕn∥H ≤ C (∥∇µn∥H + ∥ϕn∥H + ∥∇(σn + χ(1 −ϕn))∥H) ,
and by (3.4) we obtain

∥σn∥L2(0,T ;V ) + ∥ϕn∥L2(0,T ;V ) ≤ C ∀0 < T <∞. (3.8)
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Next, multiplying (3.1c) with Πn(Ψ′(ϕn)) and integrating over Ω leads to

A∥Πn(Ψ′(ϕn))∥2H = (µn + χσn −Baϕn +BJ ⋆ ϕn,Πn(Ψ′(ϕn)))
≤ (∥µn + χσn∥H + 2a∗B∥ϕn∥H) ∥Πn(Ψ′(ϕn))∥H ,

and by (3.7), (3.8) we see that

∥Πn(Ψ′(ϕn))∥L2(0,T ;H) ≤ CT , ∀0 < T <∞. (3.9)

Similarly, multiplying (3.1c) with −∆(Πn(Ψ′(ϕn)) ∈Wn, integrating over Ω and applying
integration by parts leads to

A∥∇Πn(Ψ′(ϕn)∥2H = −(∇µn + χ∇σn,∇Πn(Ψ′(ϕn)))
+B(ϕn∇a + a∇ϕn − (∇J ⋆ ϕ),∇Πn(Ψ′(ϕn))).

Using the assumption a ∈ W 1,∞ from (A3), applying Young’s inequality for convolution
and the boundedness of {∇µn}n∈N, {∇σn}n∈N, {∇ϕn}n∈N and {ϕn}n∈N in L2(0, T ;H) leads
to

∥∇Πn(Ψ′(ϕn))∥L2(0,T ;H) ≤ C, ∥Πn(Ψ′(ϕn))∥L2(0,T ;V ) ≤ CT ∀0 < T <∞. (3.10)

We now deduce the estimates for the sequence of time derivatives {ϕ′n}n∈N and {σ′n}n∈N.
From the boundedness of {∇µn}n∈N and {∇(σn + χ(1 − ϕn))}n∈N in L2(0, T ;H), the
estimates for the time derivatives come from the estimates for the source term Sn =
P (ϕn)(σn + χ(1 − ϕn) − µn). Let

Qn ∶=
√
P (ϕn)(σn + χ(1 − ϕn) − µn).

Then, from (3.4), we have boundedness of {Qn}n∈N in L2(0, T ;H) for all 0 < T <∞. Now,
take a test function ζ ∈ D(N ) and write it as ζ = ζ1 + ζ2, where ζ1 ∈Wn and ζ2 ∈W ⊥

n . We
recall that ζ1, ζ2 are orthogonal in H, V , and D(N ). Then, from (3.1a) we have

⟨ϕ′n, ζ⟩D(N) = ⟨ϕ′n, ζ1⟩D(N) = −(m(ϕn)∇µn,∇ζ1) + (Sn, ζ1),
and a similar identity follows from (3.1b). Observe now that we have

∣(Sn, ζ1)∣ ≤ ∥√P (ϕn)∥H∥Qn∥H∥ζ1∥L∞ ≤ C (1 + ∥ϕn∥q/2Lq ) ∥Qn∥H∥ζ∥D(N),
where (A7) has been used. From this last estimate, on account also of the bound of Qn

in L2(0, T ;H) and of (3.2), there follows that we need to control the sequence of ϕn in
Lγq(0, T ;Lq), with some γ > 1, in order to get the control of the sequences of ϕ′n, σ

′
n in

Lr(0, T ;D(N −1)), with some r > 1. On the other hand, we know that ϕn is bounded in
L∞(0, T ;H) ∩L2(0, T ;V ), and thanks to Gagliardo–Nirenberg inequality (1.5), we have

L∞(0, T ;H) ∩L2(0, T ;V ) ⊂ L 4q

3(q−2) (0, T ;Lq) for q > 2. (3.11)

Therefore, we can see that, thanks to the growth condition q < 10
3

in assumption (A7),

there exists γ > 1 such that 4q
3(q−2) ≥ γq. This provides the bound for ϕn in Lγq(0, T ;Lq),

with some γ > 1, and hence the desired bound for the sequences of time derivatives ϕ′n, σ
′
n,

namely

∥ϕ′n∥Lr(0,T ;D(N −1)) + ∥σ′n∥Lr(0,T ;D(N −1)) ≤ C for some r > 1. (3.12)
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3.1.2 Passing to the limit

From the a priori estimates (3.4), (3.7), (3.8), (3.12) and using compactness results (for
example [46, §8, Cor. 4]), we obtain for a non-relabelled subsequence and any s < 6,

ϕn → ϕ weakly* in L∞(0, T ;H) ∩L2(0, T ;V ) ∩W 1,r(0, T ;D(N −1)), (3.13a)

ϕn → ϕ strongly in L2(0, T ;Ls) ∩C0([0, T ];V ′) and a.e. in QT , (3.13b)

σn → σ weakly* in L∞(0, T ;H) ∩L2(0, T ;V ) ∩W 1,r(0, T ;D(N −1)), (3.13c)

σn → σ strongly in L2(0, T ;Ls) ∩C0([0, T ];V ′) and a.e. in QT , (3.13d)

µn → µ weakly in L2(0, T ;V ). (3.13e)

To show that the limit functions (ϕ,µ,σ) satisfy Definition 2.1, we can now proceed
by means of a standard argument, which involves multiplying (3.1a) and (3.1b) by δ ∈
C∞c (0, T ), taking ζ ∈ Wk, with fixed k ≤ n, and then passing to the limit as n → ∞,
taking the weak/strong convergences above, as well as the density of ⋃∞k=1Wk in D(N )
into account. We omit the easy details, and we just sketch the less obvious points.

First, assumption (A1), the a.e. convergence (3.13b), the application of Lebesgue
dominated convergence theorem, the weak convergence (3.13e), and estimate (3.2) imply
that

m(ϕn)∇µn →m(ϕ)∇µ weakly in L2(0, T ;H).
The term involving n(⋅) can be handled in a similar fashion. Meanwhile, we obtain

from (3.10), that

Πn(Ψ′(ϕn))→ ξ weakly in L2(0, T ;V ),
for some ξ ∈ L2(0, T ;V ). To identify ξ with Ψ′(ϕ), we first note that by the continuity
of Ψ′ and the a.e. convergence of ϕn to ϕ in QT , it holds that Ψ′(ϕn) converges a.e. to
Ψ′(ϕ) in QT . Then, thanks to (3.6) we have that

Ψ′(ϕn)→ Ψ′(ϕ) weakly* in L∞(0, T ;Lz) for z ∈ (1,2],
where we used the fact that the weak limit and the pointwise limit must coincide. Using
ζ ∈Wk and hence ζ = Πn(ζ), for all n ≥ k, we obtain

∫
T

0
(Ψ′(ϕ), δζ)dt = lim

n→∞∫
T

0
(Ψ′(ϕn), δζ)dt = lim

n→∞∫
T

0
(Ψ′(ϕn), δΠn(ζ))dt

= lim
n→∞∫

T

0
(Πn(Ψ′(ϕn)), δζ)dt = ∫ T

0
(ξ, δζ)dt .

As far as the source terms are concerned, we first see that

ϕn → ϕ strongly in Lq(QT ). (3.14)

This immediately follows from (3.13a), (3.13b) and the from the embedding

L∞(0, T ;H) ∩L2(0, T ;V ) ⊂ L 10

3 (QT ),
which follows from Gagliardo-Nirenberg inequality (recall also that q < 10

3
). Then, (3.14),

assumption (A7) and the generalized Lebesgue dominated convergence theorem entail the
strong convergence √

P (ϕn)→√P (ϕ) strongly in L2(QT ). (3.15)
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Next, we see also that√
P (ϕn)(σn + χ(1 −ϕn) − µn)→√P (ϕ)(σ + χ(1 −ϕ) − µ) weakly in L2(QT ). (3.16)

Indeed, the weak convergence of σn + χ(1 − ϕn) − µn to σ + χ(1 − ϕ) − µ in L2(QT ),
together with the strong convergence (3.15) imply that the weak convergence (3.16) holds
in L1(QT ) and, by (3.2), also in L2(QT ). Moreover, from the last two convergences we
obtain P (ϕn)(σn + χ(1 − ϕn) − µn)→ P (ϕ)(σ + χ(1 − ϕ) − µ) weakly in L1(QT ), which is
enough to pass to the limit in the source terms. Finally, we can also prove that the initial
conditions ϕ(0) = ϕ0 and σ(0) = σ0 are satisfied. Since the argument is standard, we omit
the details.

Energy inequality. In order to prove (2.3) we can argue as follows. We integrate (3.2)
between 0 and t, then multiply the resulting identity by an arbitrary ω ∈ D(0, t), with
ω ≥ 0. By integrating this second identity again in time between 0 and t, we get

∫
t

0
En(s)ω(s)ds
+ ∫

t

0
ω(s)(∫ s

0
∥√m(ϕn)∇µn∥2H + ∥√n(ϕn)∇(σn + χ(1 − ϕn))∥2H dτ) ds

+ ∫
t

0
ω(s)∫ s

0
∥√P (ϕn)(σn + χ(1 −ϕn) − µn)∥2H dτ ds = En(0)∫ t

0
ω(s)ds.

(3.17)

We now pass to the limit as n→∞ in this identity. On the left-hand side we use the weak
convergences in L2(QT ) of √m(ϕn)∇µn to

√
m(ϕ)∇µ, and of

√
n(ϕn)∇(σn +χ(1 −ϕn))

to
√
n(ϕ)∇(σ + χ(1 − ϕ)), (3.16), the weak/strong convergences above for ϕn, σn, the

lower semicontinuity of the norm and Fatou’s lemma. On the right-hand side we use
that fact that, since ϕ0 ∈ D(N ), then ϕn(0) → ϕ0 in L∞ and hence we have En(0) =
E(ϕn(0), σn(0)) → E(0) = E(ϕ0, σ0). After passing to the limit, from (3.17) we therefore
obtain the corresponding inequality for the solution pair (ϕ,σ), which holds for every
ω ∈ D(0, t), with ω ≥ 0, and which then yields (2.3).

3.2 Improved temporal regularity and energy identity

Suppose (A7) is satisfied with q ≤ 4
3
, then we have

∣(Sn, ζ)∣ ≤ ∥P (ϕn)∥
L

3
2

∥σn + χ(1 − ϕn) − µn∥L6∥ζ∥L6

≤ C∥P (ϕn)∥
L

3
2

∥σn + χ(1 −ϕn) − µn∥L6∥ζ∥V .
Furthermore,

∥P (ϕn)∥
L

3
2

≤ C (1 + ∥ϕn∥qH) , (3.18)

which in turn implies that {P (ϕn)}n∈N is bounded uniformly in L∞(0, T ;L 3

2 ) by (3.4).
This yields that {Sn}n∈N = {P (ϕn)(σn + χ(1 − ϕn) − µn)}n∈N is bounded uniformly in
L2(0, T ;V ′) and consequently

∥ϕ′n∥L2(0,T ;V ′) + ∥σ′n∥L2(0,T ;V ′) ≤ C ∀0 < T <∞. (3.19)

Passing to the limit n→∞ involves the same argument in Section 3.1.2, but we now have
ϕt, σt ∈ L2(0, T ;V ′). Furthermore, as µ,σ,Ψ′(ϕ) ∈ L2(0, T ;V ), we obtain, by a similar
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argument to [18, Proof of Lem. 2(a)],

⟨ϕt, µ⟩V = d

dt
∫
Ω
AΨ(ϕ) + B

2
a(x) ∣ϕ∣2 − B

2
ϕ(J ⋆ϕ)dx − χ⟨ϕt, σ⟩V ,

d

dt
∫
Ω

1

2
∣σ∣2 + χσ(1 −ϕ)dx = ⟨σt, σ + χ(1 −ϕ)⟩V + ⟨ϕt,−χσ⟩V .

Then, upon adding with the equalities resulting from substituting ζ = µ in (2.2a) and
ζ = σ+χ(1−ϕ) in (2.2b), we obtain an analogous identity to (3.2) for (ϕ,σ). By integrating
in time between 0 and t we deduce the energy identity, namely (2.3) holds as an equality
for all t > 0.

3.3 Continuous dependence with constant mobilities

For two weak solutions (ϕi, σi)i=1,2 to (1.2) corresponding to initial data (ϕ0,i, σ0,i)i=1,2
satisfying the hypothesis of Theorem 2.2, we define

ϕ ∶= ϕ1 − ϕ2, σ ∶= σ1 − σ2,
µ ∶= µ1 − µ2 = AΨ′(ϕ1) −AΨ′(ϕ2) +Baϕ −BJ ⋆ϕ − χσ,

which by Theorem 2.1 satisfy

ϕ,σ ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) ∩L∞(0, T ;H), µ ∈ L2(0, T ;V ),
and

⟨ϕt, ζ⟩V + (∇µ,∇ζ) + (µ, ζ) (3.20a)

= ((P (ϕ1) −P (ϕ2))(σ2 + χ(1 − ϕ2) − µ2), ζ) + (P (ϕ1)(σ − χϕ − µ), ζ) + (µ, ζ),⟨σt, φ⟩V + (∇(σ − χϕ),∇φ) + (σ − χϕ,φ) (3.20b)

= −((P (ϕ1) − P (ϕ2))(σ2 + χ(1 − ϕ2) − µ2), ζ) − (P (ϕ1)(σ − χϕ − µ), ζ) + (σ − χϕ,φ),
for all ζ,φ ∈ V . Since ϕt, σt ∈ L2(0, T ;V ′), we insert ζ = N −1ϕ and φ = N −1σ and employ
the relations (1.7), which upon adding leads to

1

2

d

dt
(∥ϕ∥2V ′ + ∥σ∥2V ′) + (µ,ϕ) + ∥σ∥2H − (χϕ,σ)

= (Z,N −1ϕ −N −1σ) + (µ,N −1ϕ) + (σ − χϕ,N −1σ) =∶ I1 + I2 + I3,
(3.21)

where

Z ∶= (P (ϕ1) − P (ϕ2))(σ2 + χ(1 −ϕ2) − µ2) +P (ϕ1)(σ − χϕ − µ).
Using the definition of µ = µ1−µ2, the Mean value theorem applied to Ψ′, (A4), Young’s

inequality for convolution, Hölder’s inequality, we see that

(µ − χσ,ϕ) = (A(Ψ′(ϕ1) −Ψ′(ϕ2)) +Baϕ −BJ ⋆ϕ − 2χσ,ϕ)
≥ c0∥ϕ∥2H −B⟨N (J ⋆ ϕ),N −1ϕ⟩V − 2χ∥σ∥H∥ϕ∥H
≥ c0∥ϕ∥2H −B∥N (J ⋆ ϕ)∥V ′∥ϕ∥V ′ − 2χ∥σ∥H∥ϕ∥H
≥ c0∥ϕ∥2H −Bb∗∥ϕ∥H∥ϕ∥V ′ − 2χ∥σ∥H∥ϕ∥H
≥ η∥ϕ∥2H − B2 b∗2

4η
∥ϕ∥2V ′ − χ2

c0 − 2η
∥σ∥2H ,
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where b∗ ∶= a∗ + b and η ∈ (0, c0/2) is to be fixed. We now insert this last estimate into
(3.21) and, owing to the condition c0 > χ2, we can fix η = η0 small enough such that
δ0 ∶= 1 − χ2/(c0 − 2η0) > 0. Therefore, we obtain

1

2

d

dt
(∥ϕ∥2V ′ + ∥σ∥2V ′) + η0∥ϕ∥2H + δ0∥σ∥2H ≤ I1 + I2 + I3 + B2 b∗2

4η0
∥ϕ∥2V ′ . (3.22)

The right-hand sides I1, I2 and I3 can be estimated as follows: Using (1.7), it holds that

∣I3∣ ≤ (∥σ∥V ′ + χ∥ϕ∥V ′) ∥N −1σ∥V ≤ ∥σ∥2V ′ + χ∥ϕ∥V ′∥σ∥V ′ . (3.23)

The estimates for I1 and I2 will require an estimate for ∥µ∥V ′ . We first note that for every
ζ ∈ V we have

∣(aϕ, ζ)∣ = ∣(ϕ,aζ)∣ ≤ ∥ϕ∥V ′∥aζ∥V ≤ b∗∥ϕ∥V ′∥ζ∥V , (3.24)

∣(J ⋆ ϕ, ζ)∣ = ∣(ϕ,J ⋆ ζ)∣ ≤ ∥ϕ∥V ′∥J ⋆ ζ∥V ≤ b∗∥ϕ∥V ′∥ζ∥V , (3.25)

which yield ∥aϕ∥V ′ ≤ b∗∥ϕ∥V ′ and ∥J ⋆ϕ∥V ′ ≤ b∗∥ϕ∥V ′ . From (B3), it holds that

∥Ψ′(ϕ1) −Ψ′(ϕ2)∥
L

6
5

≤ C (1 + ∥ϕ1∥rL3r + ∥ϕ2∥rL3r) ∥ϕ∥H ,

and so, with the continuous embedding L
6

5 ⊂ V ′ we have that

∣(Ψ′(ϕ1) −Ψ′(ϕ2),N −1f)∣ ≤ ∥Ψ′(ϕ1) −Ψ′(ϕ2)∥V ′∥N −1f∥V
≤ C (1 + ∥ϕ1∥rL3r + ∥ϕ2∥rL3r) ∥ϕ∥H∥f∥V ′ . (3.26)

Using (A3), we find that

∥µ∥V ′ ≤ AC (1 + ∥ϕ1∥rL3r + ∥ϕ2∥rL3r) ∥ϕ∥H + 2b∗B∥ϕ∥V ′ + χ∥σ∥V ′ . (3.27)

Immediately, we have

∣I2∣ ≤ AC (1 + ∥ϕ1∥rL3r + ∥ϕ2∥rL3r) ∥ϕ∥H∥ϕ∥V ′ + 2b∗B∥ϕ∥2V ′ + χ∥σ∥V ′∥ϕ∥V ′
≤ C (1 + ∥ϕ1∥2rL3r + ∥ϕ2∥2rL3r) ∥ϕ∥2V ′ + η0

4
∥ϕ∥2H +C (∥ϕ∥2V ′ + ∥σ∥2V ′) . (3.28)

By (B2), P is non-negative, bounded and Lipschitz continuous, and so

∣I1∣ ≤ ∥P (ϕ1) −P (ϕ2)∥H∥σ2 + χ(1 − ϕ2) − µ2∥L3∥N −1ϕ −N −1σ∥L6

+C∥σ − χϕ − µ∥V ′∥N −1ϕ −N −1σ∥V
≤ C∥ϕ∥H∥σ2 + χ(1 − ϕ2) − µ2∥V (∥ϕ∥V ′ + ∥σ∥V ′)
+C((χ + 1)∥σ∥V ′ + (2b∗B + χ)∥ϕ∥V ′) (∥ϕ∥V ′ + ∥σ∥V ′)
+AC (1 + ∥ϕ1∥rL3r + ∥ϕ2∥rL3r) ∥ϕ∥H (∥ϕ∥V ′ + ∥σ∥V ′)
≤ C (1 + ∥σ2 + χ(1 − ϕ2) − µ2∥2V + ∥ϕ1∥2rL3r + ∥ϕ2∥2rL3r) (∥ϕ∥2V ′ + ∥σ∥2V ′)
+
η0

4
∥ϕ∥2H .

(3.29)

By Young’s inequality, upon substituting (3.23), (3.28), (3.29) into (3.22) we obtain

d

dt
(∥ϕ∥2V ′ + ∥σ∥2V ′) + η0∥ϕ∥2H + 2δ0∥σ∥2H .

≤ C (1 + ∥ϕ1∥2rL3r + ∥ϕ2∥2rL3r + ∥σ2 + χ(1 − ϕ2) − µ2∥2V ) (∥ϕ∥2V ′ + ∥σ∥2V ′)
=∶ X (∥ϕ∥2V ′ + ∥σ∥2V ′) .
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Now, the prefactor X for (∥ϕ∥2V ′ + ∥σ∥2V ′) on the right-hand side belongs to L1(0, T ),
provided r ≤ 4/3. Indeed, employing (3.11) (take q = 3r) we have ϕ1, ϕ2 ∈ L 4r

3r−2 (0, T ;L3r)
and 4r

3r−2 ≥ 2r for r ≤ 4/3. The continuous dependence estimate (2.8) then follows from
Gronwall’s lemma. If r ≤ 2

3
, then from (3.27) we have

∫
t

0
∥µ∥2V ′ ds ≤ C ∫ t

0
(1 + ∥ϕ1∥2rL2 + ∥ϕ2∥2rL2) ∥ϕ∥2H ds +C (∥ϕ∥2L2(0,t;V ′) + ∥σ∥2L2(0,t;V ′))

≤ C ⎛⎝1 + ∑i=1,2 ∥ϕi∥2rL∞(0,T ;H)
⎞
⎠∥ϕ∥2L2(0,t;H) +C (∥ϕ∥2L2(0,t;V ′) + ∥σ∥2L2(0,t;V ′))

≤ C (∥ϕ(0)∥2V ′ + ∥σ(0)∥2V ′) .
4 Degenerate mobility and singular potential

4.1 Existence

For ε > 0, we consider the approximate problem (Pε) given by

ϕε,t = div (mε(ϕε)∇µε) + Pε(ϕε)(σε + χ(1 − ϕε) − µε) in QT ,

µε = AΨ′ε(ϕε) +Baϕε −BJ ⋆ϕε − χσε in QT ,

σε,t = div (n(ϕε)∇(σε + χ(1 −ϕε))) −Pε(ϕε)(σε + χ(1 −ϕε) − µε) in QT ,

(Pε)

with Neumann boundary conditions on ∂Ω × (0, T ) and initial conditions ϕε(0) = ϕ0,
σε(0) = σ0, which is obtained by replacing the singular potential Ψ with a regular potential
Ψε = Ψ1,ε +Ψ2,ε and the degenerate mobility m by a non-degenerate mobility mε given by

mε(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m(1 − ε) for s ≥ 1 − ε,
m(s) for ∣s∣ ≤ 1 − ε,
m(−1 + ε) for s ≤ −1 + ε,

(4.1a)

Ψ1,ε(s) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(1 − ε) +Ψ′1(1 − ε)(s − (1 − ε))
+1
2
Ψ′′1(1 − ε)(s − (1 − ε))2 + 1

6
(s − (1 − ε))3 for s ≥ 1 − ε,

Ψ1(s) for ∣s∣ ≤ 1 − ε,
Ψ1(−1 + ε) +Ψ′1(−1 + ε)(s − (ε − 1))
+1
2
Ψ′′1(−1 + ε)(s − (ε − 1))2 + 1

6
∣s − (ε − 1)∣3 for s ≤ −1 + ε

(4.1b)

Ψ2,ε(s) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ2(1 − ε) +Ψ′2(1 − ε)(s − (1 − ε))
+1
2
Ψ′′2(1 − ε)(s − (1 − ε))2 for s ≥ 1 − ε,

Ψ2(s) for ∣s∣ ≤ 1 − ε,
Ψ2(−1 + ε) +Ψ′2(−1 + ε)(s − (ε − 1))
+1
2
Ψ′′2(−1 + ε)(s − (ε − 1))2 for s ≤ −1 + ε.

(4.1c)

Note that Ψ1,ε is a slightly different variant to the approximation employed in [18].
By (C4) and (4.1a), it holds that mε satisfies (A1) for positive ε. We introduce the
approximate entropy function Mε ∈ C2(R) by

mε(s)M ′′
ε (s) = 1, Mε(0) =M ′

ε(0) = 0, (4.2)
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and the approximate nonlinearity Pε ∈ C0(R) by

Pε(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (1 − ε) for s ≥ 1 − ε,
P (s) for ∣s∣ ≤ 1 − ε,
P (−1 + ε) for s ≤ −1 + ε.

(4.3)

In the following, we will derive some properties for the approximating functions Ψε, Mε,
and Pε, and also some a priori estimates for {ϕε, µε, σε} that are uniform in ε. For the
rest of this section, the symbol C denotes positive constants that may vary line by line
but are independent of ε.

4.1.1 Properties of the approximate functions

The approximate potential. We now show that under Assumption 2.3 the approxi-
mation Ψε = Ψ1,ε+Ψ2,ε satisfies (A4), (A5), (A6) from Assumption 2.1. From (C3), (4.1b)
and (4.1c) we observe that

AΨ′′ε (s) +Ba(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
AΨ′′(s) +Ba(x) for ∣s∣ ≤ 1 − ε,
AΨ′′(1 − ε) +Ba(x) + (s − 1 + ε) for s > 1 − ε,
AΨ′′(−1 + ε) +Ba(x) + ∣s − ε + 1∣ for s < −1 + ε

≥ c0 ∀s ∈ R, a.e. x ∈ Ω,

(4.4)

which implies that Ψε satisfies (A4) for all ε > 0. Furthermore, (C3) immediately gives a
lower bound for Ψ′′:

Ψ′′(s) ≥ 1

A
(c0 −B∥a∥L∞(Ω)) =∶ k ∀s ∈ (−1,1).

Then, we deduce from (4.1b) and (4.1c), and applying Young’s inequality, that there exists
two constants k1 > 0, k2 ∈ R, independent of ε, such that

Ψε(s) ≥ k1 ∣s∣3 − k2 ∀s ∈ R.
By Young’s inequality with Hölder exponents, we observe that

Ψε(s) ≥ k1 ∣s∣3 − k2 ≥ c2 ∣s∣2 −C(c2, k1, k2) ∀s ∈ R,
where we can take the constant c2 such that (2.1) is satisfied. Therefore, (A5) is also
satisfied for all ε > 0. Meanwhile, by the definitions (4.1b), (4.1c), Ψε has cubic growth
for fixed ε > 0 and thus (A6) is satisfied with z = 3

2
.

Uniform bounds on the initial energy. We now establish that Ψε(ϕ0) is bounded
in L1(Ω) independent of ε, see also [24, Proof of Thm. 2] and [20, Proof of Lem. 4]. By
Taylor’s theorem, for ε ∈ (0, ε0], where ε0 is the constant in (C2), we have, for 1− ε ≤ s < 1

Ψ1(s) = Ψ1(1 − ε) +Ψ′1(1 − ε)(s − (1 − ε)) + 1

2
Ψ′′1(ξs)(s − (1 − ε))2,

where ξ ∈ (1−ε, s). Then, condition (C2) implies that Ψ′′(ξs) ≥ Ψ′′(1−ε) and so Ψ1,ε(s)−(s − (1 − ε))3/6 ≤ Ψ1(s). We argue in a similar fashion for −1 < s ≤ −1 + ε. Since
Ψ1(s) = Ψ1,ε(s) for ∣s∣ ≤ 1 − ε, we get the bound

Ψ1,ε(s) ≤ Ψ1(s) + ε3

6
∀s ∈ (−1,1), ∀ε ∈ (0, ε0]. (4.5)

18



On the other hand, using Ψ2 ∈ C2([−1,1]) and a similar argument involving Taylor’s
theorem, there exist constants L1,L2 > 0 such that

∣Ψ2,ε(s)∣ ≤ L1 ∣s∣2 +L2 ∀s ∈ R, ∀ε ∈ (0, ε0]. (4.6)

Then, by (C6), (4.5) and (4.6) it holds that

∫
Ω
Ψε(ϕ0)dx ≤ ∫

Ω
Ψ1(ϕ0)dx +L1∥ϕ0∥2H +C <∞ ∀ε ∈ (0, ε0]. (4.7)

The approximate entropy function. From the definitions (4.1a) and (4.2), we obtain

Mε(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M(1 − ε) +M ′(1 − ε)(s − (1 − ε)) + 1

2
M ′′(1 − ε)(s − (1 − ε))2 for s ≥ 1 − ε,

M(s) for ∣s∣ ≤ 1 − ε,
M(ε − 1) +M ′(ε − 1)(s − (ε − 1)) + 1

2
M ′′(ε − 1)(s − (ε − 1))2 for s ≤ −1 + ε.

Assumption (C4) yields that m is non-increasing in [1 − ε0,1] and non-decreasing in[−1,−1+ ε0]. This implies that M ′′ = 1
m

is non-decreasing in [1− ε0,1) and non-increasing
in (−1,−1+ ε0]. We refer the reader to [5, §3.4], [18, Proof of Lem. 2 c)] and [24, Proof of
Thm. 2] for the proof of the following bounds:

Mε(s) ≤M(s), ∣M ′
ε(s)∣ ≤ ∣M ′(s)∣ ∀s ∈ (−1,1) ∀ε ∈ (0, ε0], (4.8)

∫
Ω
(∣ϕε∣ − 1)2+ dx ≤ 2max(m(−1 + ε),m(1 − ε))∥M(ϕε)∥L1 . (4.9)

By (4.8), for any initial data ϕ0 satisfying (C6), we have

∫
Ω
Mε(ϕ0)dx ≤ ∫

Ω
M(ϕ0)dx <∞. (4.10)

The approximate nonlinearity. From (4.3) and the expression for Mε above, we
obtain

√
Pε(s)M ′

ε(s) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
P (1 − ε)M ′(1 − ε) + √P (1−ε)

m(1−ε) (s − (1 − ε)) for s ≥ 1 − ε,√
P (s)M ′(s) for ∣s∣ ≤ 1 − ε,√
P (−1 + ε)M ′(−1 + ε) + √P (−1+ε)

m(−1+ε) (s − (ε − 1)) for s ≤ −1 + ε.
(4.11)

We now use (C4) and (C5) to estimate the function
√
P (s)M ′(s). For any s ∈ [1 − ε0,1),

it holds that

∣√P (s)M ′(s)∣ = ∣√P (s)(∫ 1−ε0

0

1

m(r) dr + ∫
s

1−ε0

1

m(r) dr )∣ ≤ C +
√
P (s)

m(s) ∣s − 1 + ε0∣
≤ c7 ∣s∣ +C.

A similar estimate holds for any s ∈ (−1,−1 + ε0], and for ∣s∣ ≤ 1 − ε0 we have

∣√P (s)M ′(s)∣ ≤√P (s)max(∫ 1−ε0

0

1

m(r) dr ,∫
0

−1+ε0

1

m(r) dr ) ≤ C,
thanks to the fact that P ∈ C0([−1,1]) and m(s) > 0 for all ∣s∣ ≤ 1 − ε0. Hence, by the
explicit form in (4.11) and (C5) there exists a positive constant C such that

∣√Pε(s)M ′
ε(s)∣ ≤ c7 ∣s∣ +C ∀s ∈ R, ∀ε ∈ (0, ε0]. (4.12)
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4.1.2 Uniform estimates

By Theorem 2.1, for fixed ε ∈ (0, ε0], there exists a pair (ϕε, σε) such that

ϕε, σε ∈ L∞(0, T ;H) ∩L2(0, T ;V ) ∩H1(0, T ;V ′),
which satisfies (2.2) with mε and Ψ′ε, and

µε = AΨ′ε(ϕε) +Baϕε −BJ ⋆ϕε − χσε. (4.13)

Furthermore, the pair (ϕε, σε) satisfies the energy inequality (2.3) and we then deduce
that there exists a positive constant C, independent of ε such that, for all t ∈ [0, T ],
∥σε(t)∥2H + ∥ϕε(t)∥2H + ∥√mε(ϕε)∇µε∥2L2(0,t;H)

+ ∥√n(ϕε)∇(σε − χϕε)∥2L2(0,t;H) + ∥√Pε(ϕε)(σε + χ(1 −ϕε) − µε)∥2L2(0,t;H)

≤ Eε(ϕ0, σ0) ≤ C (1 + ∥ϕ0∥2H + ∥Ψ(ϕ0)∥L1 + ∥σ0∥2H) ,
(4.14)

where Eε is given by (2.4) with Ψ replaced with Ψε, and (4.7) has been taken into account.
This immediately yields the following uniform estimates with respect to ε:

∥ϕε∥L∞(0,T ;H) + ∥σε∥L∞(0,T ;H) ≤ C, (4.15a)

∥√mε(ϕε)∇µε∥L2(0,T ;H) ≤ C, (4.15b)

∥∇(σε + χ(1 − ϕε))∥L2(0,T ;H) ≤ C, (4.15c)

∥√Pε(ϕε)(σε + χ(1 − ϕε) − µε)∥L2(0,T ;H) ≤ C. (4.15d)

Recalling the approximate entropy functionMε from (4.2), sinceM ′
ε ∈ C1(R) andM ′′

ε is
bounded on R, then we immediately see that ϕε ∈ L2(0, T ;V ) impliesM ′

ε(ϕε) ∈ L2(0, T ;V ).
Since ϕε,t ∈ L2(0, T ;V ′) we find from testing the equation for ϕε with M ′

ε(ϕε) the following
identity:

d

dt
∫
Ω
Mε(ϕε)dx + ∫

Ω
mε(ϕε)M ′′

ε (ϕε)∇µε ⋅ ∇ϕε dx

= ∫
Ω
Pε(ϕε)(σε + χ(1 − ϕε) − µε)M ′

ε(ϕε)dx .
Using mεM

′′
ε = 1 and applying the relation (4.13) to ∇µε, we have

d

dt
∫
Ω
Mε(ϕε)dx + ∫

Ω
(Ba +AΨ′′ε (ϕε)) ∣∇ϕε∣2 dx

= ∫
Ω
M ′

ε(ϕε)Pε(ϕε)(σε + χ(1 −ϕε) − µε)dx
+∫

Ω
(B∇J ⋆ ϕε + χ∇(σε − χϕε) −Bϕε∇a) ⋅ ∇ϕε + χ

2 ∣∇ϕε∣2 dx =∶K1 +K2.

(4.16)

By Young’s inequality for convolution, Hölder’s inequality and Young’s inequality we see
that

∣∫ t

0
K2 dt ∣ ≤ 2bB ∫ t

0
∥ϕε∥H∥∇ϕε∥H + χ2∥∇ϕε∥2H dt

+∫
t

0
χ∥∇(σε + χ(1 − ϕε))∥H∥∇ϕε∥H dt

≤ C + (c0 − χ2

2
+ χ2) ∥∇ϕε∥2L2(0,t;H)

(4.17)
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and

∣∫ t

0
K1 dt ∣ ≤ ∥√Pε(ϕε)(σε + χ(1 − ϕε) − µε)∥L2(0,t;H)∥M ′

ε(ϕε)√Pε(ϕε)∥L2(0,t;H)

≤ C∥M ′
ε(ϕε)√Pε(ϕε)∥L2(0,t;H).

(4.18)

Thus, upon integrating (4.16) over [0, t] for t ∈ (0, T ], and applying (4.4), (4.17) and
(4.18), we obtain

∫
Ω
Mε(ϕε(t))dx + c0 − χ

2

2
∥∇ϕε∥2L2(0,t;H)

≤ ∫
Ω
Mε(ϕ0)dx +C∥M ′

ε(ϕε)√Pε(ϕε)∥L2(0,t;H) +C.
(4.19)

The first term on the right-hand side is bounded uniformly in ε by (4.10). Moreover, (4.12)
together with (4.15a) entail that also the second term on the right-hand side of (4.19) is
bounded uniformly in ε. From (C3) we have c0 > χ2, and thus, together with (4.15c), we
obtain the following uniform estimate

∥Mε(ϕε)∥L∞(0,T ;L1) + ∥∇ϕε∥L2(0,T ;H) + ∥∇σε∥L2(0,T ;H) ≤ C. (4.20)

For estimates on the time derivative ϕε,t, we start with the variational formulation for the
equation of ϕε, and applying Hölder’s inequality, definition (4.3), (C5) and the fact that
mε is bounded above uniformly in ε, leads to

∣⟨ϕε,t, ζ⟩V ∣ ≤ ∥√mε(ϕε)∥L∞∥√mε(ϕε)∇µε∥H∥∇ζ∥H
+ ∥√Pε(ϕε)(σε + χ(1 − ϕε) − µε)∥H∥√Pε(ϕε)∥L3∥ζ∥L6

≤ C (∥√mε(ϕε)∇µε∥H + ∥√Pε(ϕε)(σε + χ(1 −ϕε) − µε)∥H) ∥ζ∥V ,
for all ζ ∈ V . Integrating in time and on account of (4.15a), (4.15b), (4.15d), we obtain

∥ϕε,t∥L2(0,T ;V ′) ≤ C. (4.21)

A similar argument, using (4.15c) and the boundedness of the mobility n(⋅) yields
∥σε,t∥L2(0,T ;V ′) ≤ C. (4.22)

4.1.3 Passing to the limit

From the a priori estimates (4.15a), (4.15b), (4.15c), (4.15d), (4.20), (4.21), (4.22) and
using compactness results, we obtain for a relabelled subsequence and any s < 6,

ϕε → ϕ weakly* in L∞(0, T ;H) ∩L2(0, T ;V ) ∩H1(0, T ;V ′), (4.23a)

ϕε → ϕ strongly in L2(0, T ;Ls) ∩C0([0, T ];V ′) and a.e. in QT , (4.23b)

σε → σ weakly* in L∞(0, T ;H) ∩L2(0, T ;V ) ∩H1(0, T ;V ′), (4.23c)

σε → σ strongly in L2(0, T ;Ls) ∩C0([0, T ];V ′) and a.e. in QT , (4.23d)

By (4.9), (4.20), the generalized Lebesgue dominated convergence theorem, and the
fact that m(±1 ∓ ε)→ 0 as ε→ 0, it holds that

∫
Ω
(−ϕ(t) − 1)2+ dx = 0, ∫

Ω
(ϕ(t) − 1)2+ dx = 0 for a.e. t ∈ (0, T ),
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which yields that ∣ϕ(x, t)∣ ≤ 1 for a.e. (x, t) ∈ QT . We now multiply the weak formulation
of (Pε) by δ ∈ C∞c (0, T ) and integrate over [0, T ], leading to

0 = ∫
T

0
δ (⟨ϕε,t, ζ⟩V + ∫

Ω
Amε(ϕε)Ψ′′ε (ϕε)∇ϕε ⋅ ∇ζ +Bmε(ϕε)a∇ϕε ⋅ ∇ζ dx) dt (4.24a)

+∫
T

0
∫
Ω
δmε(ϕε) (Bϕε∇a ⋅ ∇ζ −B(∇J ⋆ ϕε) ⋅ ∇ζ − χ∇σε ⋅ ∇ζ) dx dt

−∫
T

0
∫
Ω
δPε(ϕε)((1 + χ)σε + χ(1 −ϕε) −AΨ′ε(ϕε) −Baϕε +BJ ⋆ϕε)ζ dx dt ,

0 = ∫
T

0
δ (⟨σε,t, ζ⟩V +∫

Ω
n(ϕε)∇(σε − χϕε) ⋅ ∇ζ dx) dt (4.24b)

+∫
T

0
∫
Ω
δPε(ϕε)((1 + χ)σε + χ(1 −ϕε) −AΨ′ε(ϕε) −Baϕε +BJ ⋆ϕε)ζ dx dt ,

for ζ ∈ V and we aim to pass to the limit ε→ 0. As the argument for the terms involving
the time derivatives, the gradient terms and terms involving J in (4.24) are standard, we
will focus on the non-trivial terms involving mε(ϕε)Ψ′′ε (ϕε) and Pε(ϕε)Ψ′ε(ϕε).

To pass to the limit in ∫QT
δAmε(ϕε)Ψ′′ε (ϕε)∇ϕε ⋅ ∇ζ dx dt , it suffices to show that

δmε(ϕε)Ψ′′ε (ϕε)∇ζ converges strongly to δm(ϕ)Ψ′′(ϕ)∇ζ in L2(0, T ;H). To achieve this
we assume that the test function ζ belongs to the space D(N ), which is dense in V (see
[30, Lem. 3.1]), and then apply a density argument.

Due to the condition mΨ′′ ∈ C0([−1,1]) and the a.e. convergence ϕε → ϕ in QT , we
observe that (see, e.g., [18])

mε(ϕε)Ψ′′ε (ϕε)→m(ϕ)Ψ′′(ϕ) a.e. in QT . (4.25)

Moreover,

∣mε(s)Ψ′′ε (s)∣ ≤ ∥mΨ′′∥L∞([−1,1]) +m(1 − ε)(s − (1 − ε))χ[1−ε,∞)(s)
+m(−1 + ε) ∣s − (−1 + ε)∣χ(−∞,−1+ε](s) (4.26)

where χE denotes the characteristic function of a set E ⊂ R. Then, from (4.23a) and the
embedding L∞(0, T ;H) ∩ L2(0, T ;V ) ⊂ Lr(QT ) for r = 4 if d = 2 and for r = 10

3
if d = 3,

we have boundedness of ϕε in Lr(QT ). Using the fact that m(±1 ∓ ε) → 0 as ε → 0,
by the generalized Lebesgue dominated convergence theorem from (4.26) we deduce that(mεΨ

′′
ε )(ϕε)→ (mΨ′′)(ϕ) strongly in Lr(QT ). Since δ∇ζ ∈ L6(QT ), we infer the required

strong convergence δmε(ϕε)Ψ′′ε (ϕε)∇ζ → δm(ϕ)Ψ′′(ϕ)∇ζ in L2(0, T ;H).
It remains to pass to the limit in ∫QT

δPε(ϕε)Ψ′ε(ϕε)ζ dx dt , and it suffices to show that
Pε(ϕε)Ψ′ε(ϕε) converges strongly to P (ϕ)Ψ′(ϕ) in Ls(QT ) for some s > 1. By definition
of Pε and Ψ′ε from (4.1b), (4.1c) and (4.3), and also recalling (C5), we have (for y = 1 − ε)

∣Pε(s)Ψ′ε(s)∣ ≤ 3∥PΨ′∥L∞([−1,1]) + ∣P (y)Ψ′′(y)(s − y) + 1

2
P (y)(s − y)2∣χ[y,∞)(s)

+ ∣P (−y)Ψ′′(−y)(s + y) + 1

2
P (−y) ∣s + y∣2∣χ(−∞,−y](s)

≤ 3∥PΨ′∥L∞([−1,1]) +C ∣m(y)Ψ′′(y)∣ ∣m(y)(s − y)∣χ[y,∞)(s)
+C ∣P (y)(s − y)2∣χ[y,∞)(s)
+C (∣m(−y)Ψ′′(−y)∣ ∣m(−y)(s + y)∣ + ∣P (−y) ∣s + y∣2∣)χ(−∞,−y](s)
≤ 3∥PΨ′∥L∞([−1,1]) +Cmax (m(±1 ∓ ε), P (±1 ∓ ε)) (1 + ∣s∣2) ,

(4.27)

where we used that ∣m(y)Ψ′′(y)∣ ≤ ∥mΨ′′∥L∞([−1,1]) by (C4).
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Moreover, due to the condition PΨ′ ∈ C0([−1,1]) and the a.e. convergence of ϕε to ϕ

in QT , we have analogously to (4.25)

Pε(ϕε)Ψ′ε(ϕε)→ P (ϕ)Ψ′(ϕ) a.e. in QT .

Then, arguing as in the treatment of the term mεΨ
′′
ε , and using again the fact that

m(±1 ∓ ε) → 0 as ε → 0, and the bound for ϕε in Lr(QT ) (with r given as above), from
(4.27), by the generalized Lebesgue dominated convergence theorem, we get

Pε(ϕε)Ψ′ε(ϕε)→ P (ϕ)Ψ′(ϕ) strongly in L
r
2 (QT ).

Thus, passing to the limit ε→ 0 in (4.24) leads to (2.7).

4.2 Continuous dependence on initial data

We follow the ideas in the proof of [36, Thm. 4.1], see also [24, Proof of Prop. 4] and [21,
Proof of Thm. 4]. We define

Γ(s) ∶= ∫ s

0
m(r)dr , and Λ(x, s) ∶= ∫ s

0
m(r)Ψ′′(r)dr + a(x)Γ(s).

Then, in the case χ = 0, we can express the first equation of the weak formulation (2.7) as
follows:

0 = ⟨ϕt, ζ⟩V + (∇Λ(⋅, ϕ),∇ζ) − (Γ(ϕ)∇a,∇ζ) + (m(ϕ)(ϕ∇a −∇J ⋆ ϕ),∇ζ)
− ((P (ϕ)(σ −AΨ′(ϕ) −Baϕ +BJ ⋆ ϕ), ζ).

For any two weak solution pairs (ϕi, σi)i=1,2 corresponding to initial data (ϕ0,i, σ0,i)i=1,2
satisfying the hypothesis of Theorem 2.4, let ϕ ∶= ϕ1 − ϕ2 and σ ∶= σ1 − σ2 denote their
difference. Then, it holds that ϕ and σ satisfy

0 = ⟨ϕt, ζ⟩V + (∇(Λ(⋅, ϕ1) −Λ(⋅, ϕ2)),∇ζ) − ((Γ(ϕ1) − Γ(ϕ2))∇a,∇ζ)
+ ((m(ϕ1) −m(ϕ2))(ϕ1∇a −∇J ⋆ϕ1),∇ζ) + (m(ϕ2)(ϕ∇a −∇J ⋆ϕ),∇ζ)
− ((P (ϕ1) − P (ϕ2))(σ1 −Baϕ1 +BJ ⋆ϕ1), ζ) − (P (ϕ2)(σ −Baϕ +BJ ⋆ ϕ), ζ)
+A(P (ϕ1)Ψ′(ϕ1) − P (ϕ2)Ψ′(ϕ2), ζ),

(4.28)

and

0 = ⟨σt, ζ⟩V + (∇σ,∇ζ) −A(P (ϕ1)Ψ′(ϕ1) − P (ϕ2)Ψ′(ϕ2), ζ)
+ ((P (ϕ1) −P (ϕ2))(σ1 −Baϕ1 +BJ ⋆ ϕ1), ζ) + (P (ϕ2)(σ −Baϕ +BJ ⋆ ϕ), ζ). (4.29)

for all ζ ∈ V . To simplify the subsequent computations, we first analyse the term involving
P . By the fact that ∣ϕ2∣ ≤ 1 a.e. in QT and hence P (ϕ2) is uniformly bounded a.e. in QT ,
and thanks also to the Lipschitz continuity of P and to (3.24), (3.25), we obtain

∣(P (ϕ2)(σ −Baϕ +BJ ⋆ϕ), ζ)∣ ≤ ∥σ −Baϕ +BJ ∗ϕ∥V ′∥P (ϕ2)ζ∥V
≤ C(∥σ∥V ′ + 2b∗B∥ϕ∥V ′)(1 + ∥∇ϕ2∥)∥ζ∥D(N ). (4.30)

Next, using the Lipschitz continuity of P , Young’s inequality for convolutions, and as-
sumption (A3), we obtain

∥(P (ϕ1) − P (ϕ2))(σ1 −Baϕ1 +BJ ⋆ϕ1)∥V ′
= sup

η∈V,∥η∥V =1
∣∫

Ω
(P (ϕ1) −P (ϕ2))(σ1 −Baϕ1 +BJ ⋆ ϕ1)η dx ∣

≤ sup
η∈V,∥η∥V =1

C∥ϕ∥H∥σ1 −Baϕ1 +BJ ⋆ ϕ1∥L3∥η∥L6

≤ C∥ϕ∥H (1 + ∥σ1∥L3 + ∥ϕ1∥L3) .

(4.31)
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This in turn implies that

∣((P (ϕ1) − P (ϕ2))(σ1 −Baϕ1 +BJ ⋆ϕ1), ζ)∣
≤ C∥ϕ∥H (1 + ∥σ1∥L3 + ∥ϕ1∥L3) ∥ζ∥V . (4.32)

Using the property PΨ′ ∈ C0,1([−1,1]) and by a similar calculation to (4.31) we obtain

∥P (ϕ1)Ψ′(ϕ1) − P (ϕ2)Ψ′(ϕ2)∥V ′ ≤ C∥ϕ∥H ,

and thus, ∣A(P (ϕ1)Ψ′(ϕ1) −P (ϕ2)Ψ′(ϕ2), ζ)∣ ≤ C∥ϕ∥H∥ζ∥V . (4.33)

We now turn our attention to the other terms in (4.28). By the boundedness and Lipschitz
continuity of m, Hölder’s inequality, Young’s inequality for convolution, Young’s inequality
and the fact that ∣ϕi∣ ≤ 1 for i = 1,2, we find that

∣((Γ(ϕ1) − Γ(ϕ2)∇a,∇ζ)∣ ≤ C∥ϕ∥H∥∇ζ∥H , (4.34)

∣((m(ϕ1) −m(ϕ2))(ϕ2∇a −∇J ⋆ϕ2),∇ζ)∣ ≤ C∥ϕ∥H∥∇ζ∥H , (4.35)

∣(m(ϕ2)(ϕ∇a −∇J ⋆ ϕ),∇ζ)∣ ≤ C∥ϕ∥H∥∇ζ∥H , (4.36)

where the constant C depends on ∥m∥L∞([−1,1]), on the Lipschitz constant of m in [−1,1]
(cf. (D1)), and on b (cf. (A3)). Furthermore, by the property mΨ′′ ∈ C0([−1,1]), it holds
that

∣(Λ(⋅, ϕ1) −Λ(⋅, ϕ2), ζ)∣ ≤ ∣(a(Γ(ϕ1) − Γ(ϕ2)), ζ)∣ + ∣∫
Ω
∫

ϕ1

ϕ2

m(r)Ψ′′(r)dr ζ dx ∣
≤ a∗∥m∥L∞([−1,1])∥ϕ∥H∥ζ∥H + ∥mΨ′′∥L∞([−1,1])∥ϕ∥H∥ζ∥H
≤ C∥ϕ∥H∥ζ∥V .

(4.37)

Then, upon adding the identities obtained from substituting ζ = N −1ϕ in (4.28) and
ζ = N −1σ in (4.29), using (1.7) and adding the term

(Λ(⋅, ϕ) −Λ(⋅, ϕ2),N −1ϕ) + (σ,N −1σ)
to both sides of the equality, we obtain after applying (4.30), (4.32), (4.33), (4.34), (4.35),
(4.36), and the estimate ∥N −1f∥V ≤ ∥f∥V ′ from (1.7),

1

2

d

dt
(∥ϕ∥2V ′ + ∥σ∥2V ′) + (Λ(⋅, ϕ1) −Λ(⋅, ϕ2), ϕ) + ∥σ∥2H

≤ (Λ(⋅, ϕ) −Λ(⋅, ϕ2),N −1ϕ) + (σ,N −1σ)
+C (∥σ∥V ′ + ∥ϕ∥V ′) (1 + ∥∇ϕ2∥H) (∥ϕ∥H + ∥σ∥H)
+C (1 + ∥σ1∥L3 + ∥ϕ1∥L3) (∥ϕ∥V ′ + ∥σ∥V ′) ∥ϕ∥H .

(4.38)

From substituting ζ = N −1ϕ into (4.37) and also recalling (3.23), we have that

∣(Λ(⋅, ϕ) −Λ(⋅, ϕ2),N −1ϕ) + (σ,N −1σ)∣ ≤ C∥ϕ∥H∥ϕ∥V ′ + ∥σ∥2V ′ .
Moreover, on account of (D2) we find that

(Λ(⋅, ϕ1) −Λ(⋅, ϕ2), ϕ)
= ∫

Ω
(∫ ϕ1

ϕ2

m(r)((1 − ρ)Ψ′′1(r) + ρΨ′′1(r) +Ψ′′2(r) + a(x))dr )ϕdx

≥ (1 − ρ)∫
Ω
(∫ ϕ1

ϕ2

m(r)Ψ′′1(r)dr )ϕdx

= (1 − ρ)∫
Ω
(∫ 1

0
(mΨ′′1)(θϕ1 + (1 − θ)ϕ2)dθ) ∣ϕ∣2 dx ≥ (1 − ρ)c8∥ϕ∥2H .

(4.39)
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Altogether, from (4.38), (4.39) and by using Young’s inequality we are led to the following
differential inequality

d

dt
(∥ϕ∥2V ′ + ∥σ∥2V ′) + (1 − ρ)c8∥ϕ∥2H + ∥σ∥2H
≤ C (1 + ∥σ1∥2L3 + ∥ϕ1∥2L3 + ∥∇ϕ2∥2H) (∥ϕ∥2V ′ + ∥σ∥2V ′) .

As the prefactor (1 + ∥σ1∥2L3 + ∥ϕ1∥2L3 + ∥∇ϕ2∥2H) belongs to L1(0, T ), the application of
Gronwall’s inequality yields (2.8).
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Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for SF and ER.

References

[1] N.J. Armstrong, K.J. Painter, and J.A. Sherratt. A continuum approach to modelling
cell-cell adhesion. J. Theor. Biol., 243(1):98–113, 2006.

[2] P.W. Bates and J. Han. The Dirichlet boundary problem for a nonlocal Cahn–Hilliard
equation. J. Math. Anal. Appl., 311:289–312, 2005.

[3] P.W. Bates and J. Han. The Neumann boundary problem for a nonlocal Cahn–
Hilliard equation. J. Differential Equations, 212:235–277, 2005.

[4] I. Bosi, A. Fasano, M. Primicerio, and T. Hillen. A non-local model for cancer stem
cells and the tumour growth paradox. Math. Med. Biol. doi:10.1093/imammb/dqv037,
2015.

[5] F. Boyer. Mathematical study of multiphase flow under shear through order param-
eter formulation. Asymptot. Anal., 20:175–212, 1999.

[6] M.A.J. Chaplain, M. Lachowicz, Z. Szymańska, and D. Wrzosek. Mathematical mod-
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