18 research outputs found

    On Identifying Signatures of Positive Selection in Human Populations: A Dissertation

    Get PDF
    As sequencing technology continues to produce better quality genomes at decreasing costs, there has been a recent surge in the variety of data that we are now able to analyze. This is particularly true with regards to our understanding of the human genome—where the last decade has seen data advances in primate epigenomics, ancient hominid genomics, and a proliferation of human polymorphism data from multiple populations. In order to utilize such data however, it has become critical to develop increasingly sophisticated tools spanning both bioinformatics and statistical inference. In population genetics particularly, new statistical approaches for analyzing population data are constantly being developed—unfortunately, often without proper model testing and evaluation of type-I and type-II error. Because the common Wright-Fisher assumptions underlying such models are generally violated in natural populations, this statistical testing is critical. Thus, my dissertation has two distinct but related themes: 1) evaluating methods of statistical inference in population genetics, and 2) utilizing these methods to analyze the evolutionary history of humans and our closest relatives. The resulting collection of work has not only provided important biological insights (including some of the first strong evidence of selection on human-specific epigenetic modifications (Shulha, Crisci, Reshetov, Tushir et al. 2012, PLoS Bio), and a characterization of human-specific genetic changes distinguishing modern humans from Neanderthals (Crisci et al. 2011, GBE)), but also important insights in to the performance of population genetic methodologies which will motivate the future development of improved approaches for statistical inference (Crisci et al, in review)

    The impact of equilibrium assumptions on tests of selection

    Get PDF
    With the increasing availability and quality of whole genome population data, various methodologies of population genetic inference are being utilized in order to identify and quantify recent population-level selective events. Though there has been a great proliferation of such methodology, the type-I and type-II error rates of many proposed statistics have not been well-described. Moreover, the performance of these statistics is often not evaluated for different biologically relevant scenarios (e.g., population size change, population structure), nor for the effect of differing data sizes (i.e., genomic vs. sub-genomic). The absence of the above information makes it difficult to evaluate newly available statistics relative to one another, and thus, difficult to choose the proper toolset for a given empirical analysis. Thus, we here describe and compare the performance of four widely used tests of selection: SweepFinder, SweeD, OmegaPlus, and iHS. In order to consider the above questions, we utilize simulated data spanning a variety of selection coefficients and beneficial mutation rates. We demonstrate that the LD-based OmegaPlus performs best in terms of power to reject the neutral model under both equilibrium and non-equilibrium conditions-an important result regarding the relative effectiveness of linkage disequilibrium relative to site frequency spectrum based statics. The results presented here ought to serve as a useful guide for future empirical studies, and provides a guide for statistical choice depending on the history of the population under consideration. Moreover, the parameter space investigated and the Type-I and Type-II error rates calculated, represent a natural benchmark by which future statistics may be assessed

    Recent Progress in Polymorphism-Based Population Genetic Inference

    Get PDF
    The recent availability of whole-genome sequencing data affords tremendous power for statistical inference. With this, there has been great interest in the development of polymorphism-based approaches for the estimation of population genetic parameters. These approaches seek to estimate, for example, recently fixed or sweeping beneficial mutations, the rate of recurrent positive selection, the distribution of selection coefficients, and the demographic history of the population. Yet despite estimating similar parameters using similar data sets, results between methodologies are far from consistent. We here summarize the current state of the field, compare existing approaches, and attempt to reconcile emerging discrepancies. We also discuss the biases in selection estimators introduced by ignoring the demographic history of the population, discuss the biases in demographic estimators introduced by assuming neutrality, and highlight the important challenge to the field of achieving a true joint estimation procedure to circumvent these confounding effect

    Human-specific histone methylation signatures at transcription start sites in prefrontal neurons

    Get PDF
    Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans

    On Characterizing Adaptive Events Unique to Modern Humans

    Get PDF
    Ever since the first draft of the human genome was completed in 2001, there has been increased interest in identifying genetic changes that are uniquely human, which could account for our distinct morphological and cognitive capabilities with respect to other apes. Recently, draft sequences of two extinct hominin genomes, a Neanderthal and Denisovan, have been released. These two genomes provide a much greater resolution to identify human-specific genetic differences than the chimpanzee, our closest extant relative. The Neanderthal genome paper presented a list of regions putatively targeted by positive selection around the time of the human–Neanderthal split. We here seek to characterize the evolutionary history of these candidate regions—examining evidence for selective sweeps in modern human populations as well as for accelerated adaptive evolution across apes. Results indicate that 3 of the top 20 candidate regions show evidence of selection in at least one modern human population (P < 5 × 105). Additionally, four genes within the top 20 regions show accelerated amino acid substitutions across multiple apes (P < 0.01), suggesting importance across deeper evolutionary time. These results highlight the importance of evaluating evolutionary processes across both recent and ancient evolutionary timescales and intriguingly suggest a list of candidate genes that may have been uniquely important around the time of the human–Neanderthal split

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Evolution of the Human Genome: Adaptive Changes

    No full text
    The study of human evolution is of interest to many both for the potential it has to improve our understanding of heritable disease, as well as for the possibility of illuminating evidence for adaptations that may help to tell the story of our origin. But uncovering evidence of positive selection at the genetic level has been a challenge. It remains unclear how much of the human genome has been affected by positive selection, what the main mechanism of selection is, and what types of patterns we should be looking for to identify adaptations. With whole-genome sequencing and high performance computation, we are quickly shifting to a field in which data is no longer a limiting factor. Here we will discuss the progress that has been made towards these ends, explore the best examples of human-specific adaptations to date, and discuss the implications of these findings within the context of classical population genetic theory

    Data from: Adaptation in isolated populations: when does it happen and when can we tell?

    No full text
    Isolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here, we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment. Using simulations of single loci under positive selection and population genetics theory, we examine how population size and age of the population isolate affect the ability of outlier scans for selection to identify adaptive alleles using both single-site measures and haplotype structure. We find and explain an optimal combination of selection strength, starting frequency, and age of the adaptive allele, which we refer to as a Goldilocks zone, where adaptation is likely to occur and yet the adaptive variants are most likely to derive from a single ancestor (a ‘hard’ selective sweep); in this zone, four commonly used statistics detect selection with high power. Real-world examples of both island colonization and experimental evolution studies are discussed. Our study provides concrete considerations to be made before embarking on whole-genome sequencing of differentiated populations
    corecore