72 research outputs found

    Tough on Scholarship

    Get PDF
    This series of three articles (that\u27s why it\u27s a trilogy, duh-h-h) chronicles the legal-academic career of one S. Breckinridge Tushingham ( Breck for short). As the trilogy unfolds, Breck works his way up (or maybe it\u27s down) from his first academic position to an established professorship to dean of the South Soybean (Soso) State University law school. In the process of recording his professional history, and thus memorializing it for the ages, Breck provides (probably defamatory) insights into the American legal academy

    ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Get PDF
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.JRC.H.2-Air and Climat

    ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

    Get PDF
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall – early-winter period (November–December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36 % for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.JRC.H.2-Air and Climat

    The T1405N Carbamoyl Phosphate Synthetase Polymorphism Does Not Affect Plasma Arginine Concentrations in Preterm Infants

    Get PDF
    A C-to-A nucleotide transversion (T1405N) in the gene that encodes carbamoyl-phosphate synthetase 1 (CPS1) has been associated with changes in plasma concentrations of L-arginine in term and near term infants but not in adults. In preterm infants homozygosity for the CPS1 Thr1405 variant (CC genotype) was associated with an increased risk of having necrotizing enterocolitis (NEC). Plasma L-arginine concentrations are decreased in preterm infants with NEC.To examine the putative association between the CPS1 T1405N polymorphism and plasma arginine concentrations in preterm infants.Prospective multicenter cohort study. Plasma and DNA samples were collected from 128 preterm infants (<30 weeks) between 6 and 12 hours after birth. Plasma amino acid and CPS1 T1405N polymorphism analysis were performed.Distribution of genotypes did not differ between the preterm (CC:CA:AA = 55.5%:33.6%:10.9%, n = 128) and term infants (CC:CA:AA = 54.2%:35.4%:10.4%, n = 96). There was no association between the CPS1 genotype and plasma L-arginine or L-citrulline concentration, or the ornithine to citrulline ratio, which varies inversely with CPS1 activity. Also the levels of asymmetric dimethylarginine, and symmetric dimethylarginine were not significantly different among the three genotypes.The present study in preterm infants did not confirm the earlier reported association between CPS1 genotype and L-arginine levels in term infants

    ACTRIS ACSM intercomparison - Part 2 : Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Get PDF
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December similar to 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f(44)), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f(44) in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 +/- 2.2 %, COA: 15.0 +/- 3.4 %, OOA: 41.5 +/- 5.7 %, BBOA: 29.3 +/- 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.Peer reviewe

    ACTRIS ACSM intercomparison - Part 1 : Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

    Get PDF
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall-early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r(2) > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36% for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.Peer reviewe

    A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe

    Get PDF
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (ÎŒg/mÂł) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 ÎŒg/mÂł at half of the sites

    Organic Aerosol (OA) source apportionment using “Sliding Window” Positive Matrix Factorization (PMF) approach applied to 1-year Aerosol Chemical Speciation Monitor (ACSM) measurements in the region of Paris, France

    No full text
    The Multilinear Engine (ME-2) source apportionment toolkit (Source Finder, SoFi v4.6, http://www.psi.ch/acsmstations/ me-2; Canonaco et al 2013) was applied to 1-year continuous OA measurements monitored by an ACSM (Aerodyne Research Inc., MA, USA) from september 2011 at the French SIRTA atmospheric supersite (Site Instrumental de Recherche par TĂ©lĂ©dĂ©tection AtmosphĂ©rique; http://sirta.ipsl.fr) within the EU-FP7 ACTRIS program (Aerosols, Clouds, and Trace gases Research InfraStructure Network; http://www.actris.net). This sampling site located 20km southwest from Paris (12 million inhabitants) and is representative of regional background particulate pollution. The “Sliding Window” PMF consisted in dividing the database into 1-month datasets with 15 common days between two consecutive periods and then applying a classic PMF analysis using SoFi. This approach provides a seasonal perspective of specific OA source properties (e.g. traffic, residential wood burning) by following their mass fragmentation profiles. Two factors were clearly identified during the long-term monitoring: a hydrocarbon-like OA (HOA) factor usually associated to Primary Organic Aerosol (POA) emissions and an Oxygenated OA (OOA) factor thought to be linked to Secondary Organic Aerosols (SOA). Additionnal factors were also clearly identified depending on the season: Biomass Burning OA (BBOA) observed during wintertime, as well as semi-volatile and low-volatile OA (SV-OOA and LV-OOA, respectively) during some specific sampling periods. The complete results will be presented and discussed here
    • 

    corecore