309 research outputs found

    Data-driven Models for Advanced Control of Acid Gas Treatment in Waste-to-energy Plants

    Get PDF
    This paper presents a study of identification and validation of data-driven models for the description of the acid gas treatment process, a key step of flue gas cleaning in waste-to-energy plants. The acid gas removal line of an Italian plant, based on the injection of hydrated lime, Ca(OH)2, for the abatement of hydrogen chloride, HCl, is investigated. The final goal is to minimize the feed rate of reactant needed to achieve the required HCl removal performance, also reducing as a consequence the production of solid process residues. Process data are collected during dedicated plant tests carried out by imposing Generalized Binary Noise (GBN) sequences to the flow rate of Ca(OH)2. Various input-output and state-space models are identified with success, and related model orders are optimized. The models are then validated on different datasets of routine plant operation. The proposed modeling approach appears reliable and promising for control purposes, once implemented into advanced model-based control structures

    2D Reconstruction of Magnetotail Electron Diffusion Region Measured by MMS

    Get PDF
    Models for collisionless magnetic reconnection in near-Earth space are distinctly characterized as 2D or 3D. In 2D kinetic models, the frozen-in law for the electron fluid is usually broken by laminar dynamics involving structures set by the electron orbit size, while in 3D models the width of the electron diffusion region is broadened by turbulent effects. We present an analysis of in situ spacecraft observations from the Earth's magnetotail of a fortuitous encounter with an active reconnection region, mapping the observations onto a 2D spatial domain. While the event likely was perturbed by low-frequency 3D dynamics, the structure of the electron diffusion region remains consistent with results from a 2D kinetic simulation. As such, the event represents a unique validation of 2D kinetic, and laminar reconnection models.Peer reviewe

    Electron Signatures of Reconnection in a Global eVlasiator Simulation

    Get PDF
    Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.Peer reviewe

    CO2 gasification of chars prepared from wood and forest residue

    Get PDF
    The CO2 gasification of chars prepared from Norway spruce and its forest residue was investigated in a thermogravimetric analyzer (TGA) at slow heating rates. The volatile content of the samples was negligible; hence the gasification reaction step could be studied alone, without the disturbance of the devolatilization reactions. Six TGA experiments were carried out for each sample with three different temperature programs in 60 and 100% CO2. Linear, modulated, and constant-reaction rate (CRR) temperature programs were employed to increase the information content available for the modeling. The temperatures at half of the mass loss were lower in the CRR experiments than in the other experiments by around 120 degrees C. A relatively simple, well-known reaction kinetic equation described the experiments. The dependence on the reacted fraction as well as the dependence on the CO2, concentration were described by power functions (n-order reactions). The evaluations were also carried out by assuming a function of the reacted fraction that can mimic the various random pore/random capillary models. These attempts, however, did not result in an improved fit quality. Nearly identical activation energy values were obtained for the chars made from wood and forest residues (221 and 218 kJ/mol, respectively). Nevertheless, the forest residue char was more reactive; the temperatures at half of the mass loss showed 20-34 degrees C differences between the two chars at 10 degrees C/min heating rates. The assumption of a common activation energy, E, and a common reaction order, v, on the CO2, concentration for the two chars had only a negligible effect on the fit quality

    Planck pre-launch status: The optical system

    Get PDF
    Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers

    Prediction of the in-flight radiation patterns of the Planck telescope

    Get PDF
    This paper summarises the work done over the last few years on the prediction of the RF performance of the Planck telescope, which was done initially to support the design phase, and later to assess compliance to specifications and to infer the in-flight performance of the telescope once in its operational orbit
    • …
    corecore