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ABSTRACT: Biomass gasification experiments were carried out in a bench scale entrained flow reactor, and the produced solid
particles were collected by a cyclone and a metal filter for subsequent characterization. During wood gasification, the major part
of the solid material collected in the filter is soot. Scanning electron microscopy (SEM) images coupled with energy dispersive
spectroscopy (EDS) show agglomerated nanosize spherical soot particles (<100 nm) that are very rich in carbon. In comparison
to wood gasification, the soot content in the filter sample from straw gasification is quite low, while the contents of KCl and
K2SO4 in the filter sample are high. SEM images of the straw filter samples show that with steam addition during gasification,
where the soot yield is lower, the filter sample becomes richer in KCl and K2SO4 and appears as irregular crystals, and the typical
particle size increases from below 100 nm to above 100 nm. During gasification of dried lignin, the filter sample mainly consists
of soot and nonvolatilizable inorganic matter. SEM images of the parent wood particles and the derived char samples show that
they have similar structure, size, and shape but the derived char particle surface looks smoother indicating some degree of
melting. The reactivity of the organic fraction of the samples was determined by thermogravimetry, and it was found that char
was more reactive than soot with respect to both oxidation and CO2 gasification. The activation energy for the soot conversion is
higher than for the char conversion. These results support the observation from gasification experiments that char is more easily
converted than soot. Surprisingly, the soot produced at a higher temperature is more reactive than the soot produced at a lower
temperature.

■ INTRODUCTION

Gasification of solid fuels, such as coal and biomass, is a way of
producing synthesis gas that can be used to make a range of
products such as hydrogen, methanol, dimethyl ether, and
synthetic natural gas, as well as heat and power.1 Generally, the
various gasifiers used can be grouped in three main classes:
fixed bed, fluidized bed, and entrained flow.2 The majority of
the coal gasification processes that have been developed after
1950 are based on entrained flow gasifiers, and the majority of
commercial-sized IGCC plants also use entrained flow
gasifiers.3 The main advantages of entrained flow gasification
are fuel flexibility,4 large capacity,5,6 high carbon conversion,7,8

and high quality syngas.2,9 In many countries, biomass
represents a domestic energy source that can ensure a secure
supply of raw material to the energy system. In addition, the use
of biomass as a fuel can reduce the CO2 emission. Owing to the
high volatile content in biomass, a potential problem in biomass
gasification is the large amount of tar formed that is an
undesired byproduct.10−13 However, entrained flow gasification
operates at high temperature, thus a tar-free gas can be
obtained.
In entrained flow gasification, the fuel conversion includes

pyrolysis, char and soot oxidation and gasification by CO2 and
H2O, and gas phase reactions. Among these, char and soot
gasification are the conversion limiting steps because the
heterogeneous reactions are slower than the initial pyrolysis
and the gas phase reactions.14,15 In previous experiments of
biomass (wood and straw) entrained flow gasification, we found
a low yield of char (<0.1 wt %) at 1000 °C while no char was

left at higher reactor temperatures. On the other hand, soot was
always observed in the syngas in the temperature range 1000−
1400 °C.16 Thus, in comparison to char gasification, soot
gasification appears to be a slower process and hence
determines the overall fuel conversion of the gasification
process and influences the syngas quality.17 Therefore,
knowledge on soot conversion is needed, but presently, little
is known about the properties of soot particles emitted from
biomass entrained flow gasification.16,18

The objective of the present work was to characterize the
residual solid particles obtained from biomass entrained flow
gasification and, particularly, to determine the reactivity of the
soot and char particles. Simultaneous thermal analysis (STA)
was employed to determine the sample composition and
reactivity with respect to oxidation and CO2 gasification of the
particles. Scanning electron microscopy (SEM) with energy
dispersive X-ray spectrometry (EDS) was used to examine the
size, morphology, and elemental composition of the solid
particles.

■ EXPERIMENTAL SECTION
Fuels. Wood (beech sawdust) and straw (pulverized wheat straw

pellet), which are typical forestry and agricultural wastes respectively,
were used as biomass fuels. Lignin, a waste stream from bioethanol
production, with very high moisture content (69.2 wt %, as-received
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basis), was also used as a fuel for comparison. After suction filtration,
the lignin was dried at 105 °C for 24 h. To attain a stable feeding
during entrained flow gasification, the dried lignin was sieved to a
desired particle size below 1 mm. The particle size distributions of the
three fuels, shown in Figure 1, were determined by sieve classification.

The median diameters (d50) of wood, straw, and dried lignin were
310, 130, and 280 μm, respectively. Their proximate and ultimate
analyses are listed in Table 1. The compositions of wood and straw are

quite similar, with high volatile content and low fixed carbon content,
but straw has higher ash content, and the ash is rich in potassium.
Compared with wood and straw, the dried lignin has higher heating
value and fixed carbon content, lower volatile content, and higher ash
content. The ash of dried lignin is rich in silica.
Gasification Experiments in an Entrained Flow Reactor. The

experimental setup used in the present work includes an entrained
flow reactor and is described in detail in our previous studies.16 In the
experiments, the reactor temperature was set at 1000−1400 °C. The
fuel was fed by a gravimetric screw feeder and was carried into a
vertical electrically heated reaction tube (a length of 2 m with an inner
diameter of 0.08 m) through a water-cooled feeding probe together
with the feeder gas. They were mixed with steam, preheater main gas,
and purge gas at the inlet of the reaction tube. At the outlet of the
reaction tube, the produced syngas was directed to a heat exchanger
and then to a burner designed for flue gas treatment. The gas products

(mainly H2, CO, CO2, CH4, and C2H2) were continuously sampled
after the heat exchanger and were cleaned and dried by a filter and a
gas cooler. The composition of gas samples without dust and water
was measured by a NDIR gas analyzer and a micro gas-chromatograph
(Agilent 3000). When the measured gas composition reached a stable
state, a certain amount of syngas was drawn to a solid sampling system
through a bottom sampling probe according to the principle of
isokinetic sampling. In the solid sampling system, the larger particles
were collected by a cyclone, and the smaller particles passing the
cyclone were captured by a metal filter. The designed cut size of the
cyclone was 2.5 μm. The bottom sampling probe, cyclone, and filter
were heated to 400 °C to avoid liquid condensation. The solid
particles were sampled for 10 min during each experiment that lasted
approximately 60 min. After each experiment, when the solid sampling
system was cooled to room temperature, the solid particles in the
cyclone and metal filter were collected, weighed, and preserved for
further analysis.

Property Analysis of Residual Solid Particles. The solid
particles collected by the cyclone and metal filter during entrained flow
gasification were analyzed by various analytical techniques. Simulta-
neous thermal analysis (STA) was employed to determine different
fractions of the samples. In each analysis, 5 mg samples were loaded in
a platinum crucible and heated at 10 °C/min to the final setting
temperature in a thermogravimetric apparatus (Netzsch STA-449C).
The applied temperature program and gas environment is shown in
Figure 2. Based on the STA analysis, different fractions of the solid

particles, such as moisture, organic matters, volatilizable inorganic
compounds, and residual ash, can be identified. For volatilizable
inorganic compounds, different species, such as KCl and K2SO4, can
be identified on the basis of their evaporating temperatures. The
amount of organic matters in the filter sample is defined as soot.
Scanning electron microscopy (SEM) with energy dispersive X-ray
spectroscopy (EDS) was employed to obtain the size, morphology,
and elemental distribution of the solid particles. The used apparatus
was a Zeiss Supra 35 FEGSEM equipped with an X-ray analysis tool by
Noran Instruments for filter sample analysis and a Quanta FEGSEM
200F for cyclone sample and parent fuel analysis.

Reaction Kinetics of Residual Solid Particles. The kinetics of
the soot and char collected during wood entrained flow gasification
were also derived by nonisothermal experiments in the thermogravi-
metric apparatus. In a measurement, approximate 1 mg sample was
loaded in an alumina crucible and heated at 5−10 °C/min from room
temperature to 800 °C during oxidation or to 1100 °C during
gasification. The total gas flow was 100 mL/min. Three different O2
and CO2 concentrations were selected. The O2 concentrations in N2
were 10, 15, and 20 vol %, and the CO2 concentrations in N2 were 10,
50, and 90 vol %.

The sample conversion in the temperature range of oxidation or
gasification was defined as

α =
−
−

w w
w w

i

i f (1)

Figure 1. Particle size distributions of fuels.

Table 1. Properties of Fuels

properties
wood (as-

received basis)
straw (as-

received basis)
dried lignin
(dry basis)

moisture (wt %) 9.04 5.40 0.00
ash (wt %) 0.61 4.54 12.10
volatile (wt %) 76.70 72.27 61.20
fixed carbon (wt %)
(by diff.)

13.65 17.79 26.70

lower heating value
(MJ/kg)

16.44 16.35 21.42

C (wt %) 45.05 43.42 57.80
H (wt %) 5.76 5.58 5.70
O (wt %) (by diff.) 39.41 40.60 23.60
N (wt %) 0.13 0.37 1.20
S (wt %) 0.01 0.09 0.14
Si (wt %) 1.23 4.18
K (wt %) 0.76 0.13
Cl (wt %) 0.25 0.02
Ca (wt %) 0.23 0.43
Mg (wt %) 0.06 0.02
P (wt %) 0.03 0.06
Na (wt %) 0.01 0.28
Al (wt %) 0.01 0.07
Fe (wt %) 0.01 0.30

Figure 2. Temperature program and gas environment used for solid
particles analysis.
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where w was the sample weight at a certain temperature T (or at a
certain time t), wi was the initial sample weight at the start of oxidation
or gasification, and wf was the final sample weight at the end of
oxidation or gasification. The nonisothermal fuel conversion can be
described by using an nth order reaction model with the rate constant
given by the Arrhenius equation

= −k P A em E RT
g 0

( / )
(2)

α
β

α
β

α= − = −−

T
k P A

d
d

1
(1 )

1
e (1 )n m E RT n

g 0
( / )

(3)

where T is the reaction temperature, β is the heating rate, Pg is the O2
or CO2 partial pressure, A0 is the pre-exponential factor, E is the
activation energy, R is the ideal gas constant, and m and n are the
reaction order with respect to gas phase and solid phase respectively.
There was no change in the O2 or CO2 partial pressure during an
experiment, so an apparent pre-exponential factor A can be used as
follows:

=A P Am
g 0 (4)

Thus, eq 3 can be expressed as

α
β

α= −−

T
A

d
d

1
e (1 )E RT n( / )

(5)

In the present study, a common integral method presented by Coats
and Redfern19,20 was used to determine the kinetic parameters used in
eq 5. Through integral transformation and mathematic approximation,
eq 5 can be expressed in a linear form as19

α
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here, if

α α= = − −n g1, ( ) ln(1 ) (7)

otherwise,

α α≠ = − − −−n g n1, ( ) [(1 ) 1]/( 1)n1 (8)

A plot of ln[g(α)/T2] versus 1/T should give a straight line whose
slope and intercept determine the values of the activation energy E and
the apparent pre-exponential factor A, respectively. Three different
values, 1/2,

2/3, and 1, of the reaction order n were tested to determine
which value provided the best fit.
In addition, eq 4 can be linearized by taking the natural log of both

sides, shown as follows:

= +A m P Aln ln lng 0 (9)

For each sample, measurements at three concentrations of oxidant
and gasification agent were performed. Thus, based on eq 9, a plot of
ln A versus ln Pg should give a straight line, from which the gas phase
reaction order m and pre-exponential factor A0 are obtained from the
slope and the intercept separately.

■ RESULTS AND DISCUSSION
Composition and Morphology of Residual Solid

Particles. The weight loss curves (TG) of filter samples
obtained from the entrained flow gasification of wood, straw,
and dried lignin are shown in Figure 3, and the determined
compositions of the three samples are listed in Table 2. In the
three entrained flow gasification experiments, the operating
parameters were fixed (reactor temperature = 1400 °C; steam/
carbon molar ratio = 0.5; excess air ratio = 0.3; and oxygen
concentration = 21%). During wood gasification, soot (92.6 wt
%) is the major component in the filter sample. The
temperature (about 1050 °C) at which the inorganic matter
starts to vaporize indicates that the major part of the

volatilizable inorganic matter in the filter sample is K2SO4
(4.2 wt %).21 During straw gasification, the soot content (11.1
wt %) in the filter sample is low, while the volatilizable
inorganic matter content (sum of KCl and K2SO4 is 47.4 wt %)
is high. According to the evaporating temperatures of about 700
and 1050 °C,21,22 the first volatilizable inorganic matter is KCl
(38.2 wt %) and the second is K2SO4 (9.2 wt %). KCl and
K2SO4 were collected together with soot particles by the metal
filter, because they appeared in the gas phase during gasification
due to the high reactor temperature and then formed solid
aerosols when the syngas was cooled.23−26 The filter sample
obtained from dried lignin gasification mainly consists of soot
(44.9 wt %) and residual ash (52.9 wt %). A small amount of
volatilizable inorganic matter (1.5 wt %) was mixed with the
soot and ash. The ash of dried lignin mainly consists of silica
and calcium, which are hard to volatilize.
Both gasification temperature and steam addition have an

obvious influence on the soot yield.16,18 The compositions of
filter samples obtained from wood entrained flow gasification at
reactor temperatures of 1000 and 1400 °C with otherwise fixed
operating parameters (steam/carbon ratio = 0.5; excess air ratio
= 0.3; and oxygen concentration = 21%) are listed in Table 2,
and the corresponding weight loss curves (TG) are shown in
the Supporting Information. Soot (92.6−96.3 wt %) was the
major fraction in the two filter samples obtained at 1000 and
1400 °C. Volatilizable inorganic matter, K2SO4, was present in
the filter sample produced at 1400 °C, while it was almost
absent in the filter sample produced at 1000 °C, probably
because a smaller amount of K2SO4 aerosols were formed at the
low temperature. The compositions of filter samples obtained
from straw entrained flow gasification at reactor temperatures
of 1000 and 1400 °C with otherwise fixed operating parameters
(steam/carbon ratio = 0.5; excess air ratio = 0.3; and oxygen
concentration = 21%) are listed in Table 2, and the
corresponding weight loss curves (TG) are shown in the
Supporting Information. The soot amount in the straw filter
sample obtained at 1400 °C was lower than that obtained at
1000 °C. This is most likely because more soot was gasified at a
higher temperature and possibly catalyzed by potassium
species. The amount of volatilizable inorganic matter, KCl
and K2SO4, in the filter sample obtained at 1400 °C was higher
than that obtained at 1000 °C, probably due to the formation of
KCl and K2SO4 aerosols at the high temperature.
The composition of filter samples obtained from straw

entrained flow gasification at different steam/carbon molar
ratios of 0.0, 0.5, and 1.0 with otherwise fixed operating

Figure 3. STA analysis of the filter samples obtained from biomass
entrained flow gasification (operating parameters: T = 1400 °C; H2O/
C = 0.5; λ = 0.3; O2 = 21%).
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parameters (reactor temperature = 1400 °C; excess air ratio =
0.3; and oxygen concentration = 21%) is listed in Table 2, and
the corresponding weight loss curves (TG) are shown in the
Supporting Information. Without steam addition (H2O/C =
0.0), the soot content (43.7 wt %) in the filter sample is
relatively high, while with steam addition the soot content
quickly decreases (11.1 wt % at H2O/C = 0.5 and 5.9 wt % at
H2O/C = 1.0) owing to the soot−steam gasification reaction.
Additionally, when an almost fixed amount of syngas was drawn
to the solid sampling system in the gasification experiments, the
amount of collected filter sample also decreased with increasing
steam/carbon molar ratio. These observations further confirm
that steam addition is helpful to reduce soot emission. As a
consequence of the lower soot content, the KCl and K2SO4
contents increased from 21.3 to 40.7 wt % and from 6.0 to 9.9
wt %, respectively, with the steam/carbon molar ratio
increasing from 0.0 to 1.0. The total amounts of KCl and
K2SO4 collected in the filter sample, however, were nearly
unchanged.
During wood and straw entrained flow gasification, char

particles were found in the cyclone only at 1000 °C. The
composition of cyclone samples obtained from entrained flow
gasification of wood and straw respectively with fixed operating
parameters (reactor temperature = 1000 °C; excesssteam/
carbon ratio = 0.5; excess air ratio = 0.3; and oxygen
concentration = 21%) is listed in Table 2, and the
corresponding weight loss curves (TG) are shown in the
Supporting Information. The straw char has higher ash content

than wood char because of the higher ash content in straw.
Besides, compared with soot, we found that the ash content in
char was higher.
Four filter samples, one obtained from wood gasification and

the other three obtained from straw gasification, which were
already analyzed by STA and listed in Table 2, were further
investigated by SEM with EDS analysis. Figure 4 shows the
SEM image with EDS spectrum of the filter sample obtained
from wood gasification (reactor temperature = 1400 °C; steam/
carbon ratio = 0.5; excess air ratio = 0.3; and oxygen
concentration = 21%). In the previous STA analysis, we
found soot (92.6 wt %) is the major component in the filter
sample. In the SEM image, it can be observed that the single
soot particles are nanosized carbon spheres (<100 nm) that are
agglomerated together to form clusters and chains of spheres.
This is agreement with the structure of soot reported in the
literature,27 where it was also shown that there was no visual
difference observed between soot produced at 1200 and 1400
°C during wood (beech sawdust) pyrolysis in a drop tube
furnace. The wood filter sample is almost homogeneous. The
EDS spectrum of this sample reveals that it is very rich in
carbon because of the very high soot content, and includes
traces of oxygen, silica, sulfur, and potassium due to low
fractions of K2SO4 and SiO2 being present. The obtained
results by SEM with EDS are in qualitative agreement with the
results obtained by STA.
Figure 5 shows the SEM images with EDS spectra of the

three filter samples obtained from straw gasification (reactor

Table 2. Composition of the Solid Samples Obtained from Biomass Entrained Flow Gasification

volatilizable
inorganic
compounds
(wt %)

samples
moisture
(wt %)

organic matters
(wt %) KCl K2SO4 residual ash (wt %) total solid yield (g/kg fuel, daf basis)

Filter Samples
wood, T = 1000 °C, H2O/C = 0.5 1.0 96.3 0.0 1.0 1.8 9.6
wood, T = 1400 °C, H2O/C = 0.5 0.9 92.6 0.0 4.2 2.3 12.2
straw, T = 1000 °C, H2O/C = 0.5 1.6 67.1 14.1 1.0 16.1 13.2
straw, T = 1400 °C, H2O/C = 0.0 2.7 43.7 21.3 6.0 26.3 12.3
straw, T = 1400 °C, H2O/C = 0.5 2.2 11.1 38.2 9.2 39.3 5.3
straw, T = 1400 °C, H2O/C = 1.0 1.6 5.9 40.7 9.9 41.9 5.2
dried lignin, T = 1400 °C, H2O/C = 0.5 0.8 44.9 0.9 0.6 52.9 19.2

Cyclone Samples
wood, T = 1000 °C, H2O/C = 0.5 4.4 60.9 0.5 2.4 31.8 1.4
straw, T = 1000 °C, H2O/C = 0.5 5.2 42.6 2.3 1.2 48.7 1.4

Figure 4. SEM image with EDS spectrum of the wood filter sample obtained from entrained flow gasification (operating parameters: T = 1400 °C;
H2O/C = 0.5; λ = 0.3; O2 = 21%).
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temperature = 1400 °C; steam/carbon ratio = 0.0, 0.5, and 1.0;
excess air ratio = 0.3; and oxygen concentration = 21%). The
straw filter samples are almost homogeneous. In Figure 5a,
without steam addition (H2O/C = 0.0), the straw filter sample
looks similar to the wood filter sample, shown in Figure 4,
because of the relatively high soot content (43.7 wt %) in the
straw filter sample. However, compared with the wood filter
sample, the particle size of the straw filter sample looks larger
and the shapes of the particles are irregular instead of spherical.
This is probably because of the larger amount of KCl and
K2SO4 present, which adsorbs on the surface of the soot
particles. In its EDS spectrum, it can be found that the filter
sample is mainly composed of carbon and also includes
potassium and chlorine and minor fractions of oxygen, silica,
and sulfur. In Figure 5b, with steam addition (H2O/C = 0.5),
the particle size further increases (>100 nm) and the irregular
particle shape indicates that crystalline materials are present in
agreement with the high contents of KCl and K2SO4. The EDS
spectrum of this filter sample shows that carbon, potassium,

and chlorine are present in significant amounts. In Figure 5c, at
H2O/C = 1.0, the particles entirely lost the spherical shape and
the boundary of different particles vanished due to their
conjunction, probably because of the low soot content and high
KCl and K2SO4 contents in the filter sample. In the
corresponding EDS spectrum, it can be observed that the filter
sample is rich in potassium and chlorine and contains
additionally carbon, oxygen, sodium, silica, phosphor, and
sulfur. The EDS results of the three straw filter samples are all
in accordance with their STA results.
The SEM images of the parent wood particle used as fuel and

the derived char sample collected by the cyclone during wood
entrained flow gasification (reactor temperature = 1000 °C;
steam/carbon ratio = 0.5; excess air ratio = 0.3; and oxygen
concentration = 21%) are shown in Figure 6. Both the parent
wood particles and the derived char particles have a layered
structure with a loose and porous texture. Furthermore, the size
and shape of the derived char particle are similar to that of the
parent wood particle; thus, complete melting of the char

Figure 5. SEM images with EDS spectra of the straw filter samples obtained from entrained flow gasification (operating parameters: T = 1400 °C;
H2O/C = 0.0, 0.5, and 1.0; λ = 0.3; O2 = 21%).
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particles does not take place.28,29 However, in comparison to
the wood particle, the surface of the derived char particle looks
smoother, which probably indicates partial melting.29,30

Kinetics of Char and Soot Particles. The kinetics of
oxidation and CO2 gasification of the soot (T = 1400 °C) and
char (T = 1000 °C) samples produced during wood entrained
flow gasification were determined. The gasification with H2O
was not investigated since the STA does not allow addition of
steam, although this gasification agent would have been most
relevant. However, it is generally accepted that the reactivity
with respect to H2O gasification is approximately 2−5 times
higher than gasification with CO2, and so, the results obtained

here for CO2 may to some extent be generalized.31,32 The
weight loss curves (TG) and the corresponding differential
weight loss curves (DTG) for the oxidation and gasification of
the soot and char in different O2 and CO2 concentrations are
shown in Figure 7. As expected, the TG and DTG curves are
shifted to lower temperatures with increasing O2 or CO2

concentration. The soot and char are oxidized approximately
between 300 and 600 °C in different O2 concentrations, while
they are gasified at higher temperatures in different CO2

concentrations, approximately between 600−1000 °C. The
temperature at the maximum rate of weight loss is commonly
used to characterize reactivity.33 Figure 7a shows that the

Figure 6. SEM image of the parent wood particle and the derived wood char particle (cyclone sample) obtained from entrained flow gasification
(operating parameters: T = 1000 °C; H2O/C = 0.5; λ = 0.3; O2 = 21%).

Figure 7. TG and DTG curves for the oxidation and gasification (O2 or CO2 in N2) of the wood soot (obtained from entrained flow gasification at
1400 °C) and the wood char (obtained from entrained flow gasification at 1000 °C).
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oxidation reaction for char reaches the maximum rate at 400−
410 °C, which is approximately 50−60 °C lower than for soot.
As shown in Figure 7b, the char gasification reaches the
maximum rate at 760−780 °C, while the soot gasification
reaches the maximum rate at 820−880 °C. Thus, the char is
more reactive than soot during both oxidation and gasification.
The kinetic parameters of the soot and char oxidation and

gasification, which were derived by the integral method
described in section 2.4, are listed in Table 3. The plots of
eqs 6 and 9 for char and soot oxidation and gasification are
shown in Figure 8. We found that good linear fittings can be
obtained for n = 1.0 for both soot and char oxidation in
different O2 concentrations and for n = 0.5 for both soot and
char gasification in different CO2 concentrations. It can be seen
that the activation energy is higher for soot conversion than for
char conversion. This is probably because the char has a less

ordered structure of carbon compared to the more graphitic
soot.
The obtained kinetic parameters, listed in Table 3, were

employed in the nth order reaction model, shown in eq 3, to
simulate the soot and char conversion under oxidation and
gasification conditions. We found that the nth order reaction
model can describe the experimental results well with respect to
both soot and char oxidation and gasification. The oxidation
rate of the char was about 5−10 times faster than that of the
soot in the studied temperature range, while the gasification
rate of the char was about 5−20 times faster than that of the
soot. The results show that an important reason for not
converting all soot in the available residence time in the
entrained flow reactor is the low reactivity of soot.
As we mentioned, in the experiments of wood gasification at

1000−1400 °C, unconverted char was found only at 1000 °C,
while soot was always observed in the whole studied

Table 3. Kinetic Parameters of the Wood Char (Obtained from Entrained Flow Gasification at 1000 °C) and the Wood Soot
(Obtained from Entrained Flow Gasification at 1400, 1300, 1100, and 1000 °C) Oxidation and Gasification

samples char soot soot soot soot
sample temp. 1000 °C 1400 °C 1300 °C 1100 °C 1000 °C
oxidation in STA 10, 15, and 20 vol % 10, 15, and 20 vol % 10 vol % 10 vol % 10 vol %

O2 in N2 O2 in N2 O2 in N2 O2 in N2 O2 in N2

n 1.0 1.0 1.0 1.0 1.0
m 0.71 0.99 0.99 0.99 0.99
A0 (s

−1MPa−m) 1.43 × 108 1.43 × 1010 1.59 × 1010 7.19 × 1019 8.59 × 1019

E (kJ/mol) 119 148 153 315 325
gasification in STA 10, 50, and 90 vol % 10, 50, and 90 vol % 10 vol % 10 vol % 10 vol %

CO2 in N2 CO2 in N2 CO2 in N2 CO2 in N2 CO2 in N2

n 0.5 0.5 0.5 0.5 0.5
m 0.12 0.54 0.54 0.54 0.54
A0 (s

−1MPa−m) 1.25 × 108 3.61 × 109 4.42 × 109 5.53 × 109 1.16 × 1010

E (kJ/mol) 213 247 261 279 292

Figure 8. Linearized nth order reaction model for oxidation and gasification of the wood soot (obtained from entrained flow gasification at 1400 °C)
and the wood char (obtained from entrained flow gasification at 1000 °C): n = 1.0 for oxidation and n = 0.5 for gasification.

Energy & Fuels Article

dx.doi.org/10.1021/ef301432q | Energy Fuels 2013, 27, 262−270268

http://pubs.acs.org/action/showImage?doi=10.1021/ef301432q&iName=master.img-007.jpg&w=339&h=275


temperature range. Thus, the reactivity of the five wood soot
samples obtained at 1000−1400 °C and the wood char sample
produced at 1000 °C are compared. The weight loss curves for
the oxidation (10 vol % O2 in N2) and gasification (10 vol %
CO2 in N2) of these samples are shown in Figure 9, while the

derived kinetic parameters (n and m are fixed) are also shown
in Table 3. The weight loss curve of the wood soot produced at
1200 °C looks different from the other curves; thus, the
employed one-step nth order reaction model could not describe
its conversion well. During both oxidation and gasification, the
conversion of the soot produced at a higher temperature takes
place at a lower temperature in the STA measurements. This
reveals that both the oxidation reactivity and gasification
reactivity of soot increase when the soot is produced at a higher
temperature. This is surprising since the reactivity of solid
carbonaceous fuel normally decreases with increasing pyrolysis
temperature.30,34 However, as listed in Table 2, the potassium
content is higher in the soot produced at a higher temperature.
Therefore, the higher reactivity of soot produced at a higher
temperature may be related to the presence of potassium,
perhaps as intercalated species in the carbon, which is known to
catalyze gasification reactions.35,36 Further experiments would
be required to verify this proposal in detail. Moreover, it also
can be observed that the char produced at 1000 °C is more

reactive than the soot produced at the same temperature as well
as the soot produced at higher temperatures.

■ CONCLUSIONS

Biomass (wood, straw, and dried lignin) gasification was carried
out in a lab scale atmospheric pressure entrained flow reactor.
In the experiments, the solid products in the syngas were
collected successively by a cyclone and a metal filter. In the
cyclone, solid particles were collected only in the gasification
experiments conducted at 1000 °C, while solid particles were
captured in the metal filter in all the gasification experiments
conducted at 1000−1400 °C. The obtained solid samples were
analyzed by STA to determine the composition (moisture,
organic matters, volatilizable inorganic compound, and residual
ash) and by SEM with EDS to obtain the size, morphology, and
elemental composition. Furthermore, the reactivity and kinetics
of the soot and char produced in the wood gasification
experiments were assessed by STA.
During wood gasification, the major part of the collected

solids on the filter is soot. The SEM image with the EDS
spectrum of the wood filter sample obtained at 1400 °C shows
that the soot particles appear as agglomerated nanosize carbon
spheres (<100 nm) that are rich in carbon. Under the same
operating condition (T = 1400 °C, H2O/C = 0.5), in
comparison to wood gasification, the filter sample obtained
from straw gasification has a low soot content and high KCl and
K2SO4 contents. During straw gasification, increasing the
steam/carbon molar ratio from 0.0 to 1.0 leads to decreasing
soot content in the solids and thereby an increasing KCl and
K2SO4 content. The SEM images show that increasing the
steam/carbon molar ratio from 0.0 to 1.0 leads to changes in
the shapes of the particles from spherical to irregular crystals
and their size increasing from below 100 nm to above 100 nm.
This is probably caused by KCl and K2SO4 deposited on the
surface of soot particles. Their EDS spectra show that with
steam addition, the carbon peak obviously decreases while the
potassium and chlorine peaks notably increase. The filter
sample obtained from the dried lignin gasification experiment
mainly consisted of soot and nonvolatilizable inorganic matter,
since the dried lignin ash is rich in silica and calcium. The SEM
images of the parent wood particle and the derived char
samples show that both of them have a layered structure with a
loose and porous texture. Their similarity indicates that
complete melting of char did not take place in the conducted
entrained flow gasification experiment (T = 1000 °C).
In the study on the kinetics and reactivity of the soot and

char, we found that the char is more reactive than soot for both
oxidation and gasification, probably due to a less ordered
structure of carbon in the char compared to the soot. For both
the soot and char, the reaction order with respect to the solid
phase is found to be 1.0 during oxidation and 0.5 during
gasification. The activation energy of the soot conversion is
higher than that of the char conversion. This difference in
reactivity partly explains why char is generally fully converted in
the conducted entrained flow gasification experiments while
soot is not. Moreover, the soot produced at a higher
temperature is more reactive than the soot produced at a
lower temperature, and the char produced at 1000 °C is more
reactive than the soot produced at the same temperature as well
as the soot produced at higher temperatures.

Figure 9. Weight loss curves for the oxidation and gasification (10 vol
% O2 or CO2 in N2) of the wood soot obtained from entrained flow
gasification at 1000−1400 °C and the wood char obtained from
entrained flow gasification at 1000 °C.
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