24 research outputs found

    A generalized framework to predict continuous scores from medical ordinal labels

    Full text link
    Many variables of interest in clinical medicine, like disease severity, are recorded using discrete ordinal categories such as normal/mild/moderate/severe. These labels are used to train and evaluate disease severity prediction models. However, ordinal categories represent a simplification of an underlying continuous severity spectrum. Using continuous scores instead of ordinal categories is more sensitive to detecting small changes in disease severity over time. Here, we present a generalized framework that accurately predicts continuously valued variables using only discrete ordinal labels during model development. We found that for three clinical prediction tasks, models that take the ordinal relationship of the training labels into account outperformed conventional multi-class classification models. Particularly the continuous scores generated by ordinal classification and regression models showed a significantly higher correlation with expert rankings of disease severity and lower mean squared errors compared to the multi-class classification models. Furthermore, the use of MC dropout significantly improved the ability of all evaluated deep learning approaches to predict continuously valued scores that truthfully reflect the underlying continuous target variable. We showed that accurate continuously valued predictions can be generated even if the model development only involves discrete ordinal labels. The novel framework has been validated on three different clinical prediction tasks and has proven to bridge the gap between discrete ordinal labels and the underlying continuously valued variables

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Multivariate discrimination among cryptic mites of the genus Androlaelaps (Acari: Mesostigmata: Laelapidae) parasitic of sympatric akodontine rodents (Cricetidae: Sigmodontinae) in northeastern Argentina: possible evidence of host switch followed by speciation, with the description of two new species

    Get PDF
    Laelapids are among the most common ectoparasites of rodents. Currently, it is under discussion whether there is a single polixenous species that parasites a variety of hosts, or whether there are cryptic species highly host specific. Herein, multivariate morphometric analyses of cryptic sympatric laelapids of the genus Androlaelaps allowed us to identify different species. These species are specific of their akodontine hosts, Akodon montensis and Thaptomys nigrita, in localities situated in northeastern Argentina. In addition, we analyzed similar laelapids associated with the akodontines Deltamys kempi and Akodon cursor. Using principle component analyses we differentiated four laelapid species, each one host specific, independent of sympatry of the hosts, and without geographical variation. From these four species, we described two new species (Androlaelaps navonae n. sp. and Androlaelaps wingei n. sp.). We determined the four species based on a range of variations in several characters, mainly size. These four laelapid species belong to the Androlaelaps rotundus species group, specific to akodontines. These species are very similar among them but differ from the remainder species of the group by their small size, distance between j6 setae similar to the distance between the z5 setae, strong ventral setae, opisthogaster with 13 pairs of strong setae (one close to the distal margin of epigynal shield), and anal shield wider than long. Further studies will elucidate whether they constitute a new laelapid genus. Phylogenetic and ecological factors influencing host-specificity are discussed, and we propose that host colonization could have taken place by host switching of a single laelapid species among rodent species, followed by speciation.Fil: Lareschi, Marcela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; ArgentinaFil: Galliari, Carlos Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; Argentin
    corecore