42 research outputs found

    Subglacial-discharge plumes drive widespread subsurface warming in northwest Greenland’s fjords

    Get PDF
    This work was supported by the UK Natural Environment Research Council (Grants NE/W00531X/1 and NE/T011920/1).Greenland’s glacial fjords modulate the exchange between the ice sheet and ocean. Subglacial-discharge-driven plumes adjacent to glaciers may exert an important influence on fjord water properties, submarine glacier melting and the export of glacially-modified waters to the shelf. Here we use a numerical plume model in conjunction with observations from proximal to 14 glaciers in northwest Greenland to assess the impact of these plumes on near-glacier water properties. We find that in late summer, waters emanating from glacial plumes often make up > 50 % of the fjord water composition at intermediate depths. These plume waters are comprised largely of upwelled Atlantic Water, warming the near-glacier water profile and likely increasing submarine melting. Our findings demonstrate the key role played by plumes in driving water modification in Greenland’s fjords, and the potential for simple models to capture these impacts across a range of settings.Publisher PDFPeer reviewe

    Sensitivity of tidewater glaciers to submarine melting governed by plume locations

    Get PDF
    This work was funded by NERC award NE/P011365/1 (CALISMO: Calving laws for Ice Sheet Models) to PI Benn.The response of tidewater glaciers to ocean warming remains a key uncertainty in sea level rise predictions. Here we use a 3‐D numerical model to examine the response of an idealized tidewater glacier to spatial variations in submarine melt rate. While melting toward the center of the terminus causes only a localized increase in mass loss, melting near the lateral margins triggers increased calving across the width of the glacier, causing the terminus to retreat at several times the width‐averaged melt rate. This occurs because melting near the margins has a greater disruptive impact on the compressive stress arch that transfers resistance from the side walls to the body of the glacier. We suggest that the rate of terminus advance or retreat may thus be governed by the difference between ice velocity and submarine melting in the slow‐flowing zones away from the glacier center.Publisher PDFPeer reviewe

    Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes

    Get PDF
    This work was funded by NERC grant NE/K014609/1 to Peter Nienow and Andrew Sole.The injection at depth of ice sheet runoff into fjords may be an important control on the frontal melt rate of tidewater glaciers. Here we develop a new parameterization for ice marginal plumes within the Massachusetts Institute of Technology General Circulation Model (MITgcm), allowing three-dimensional simulation of large (500 km2) glacial fjords on annual (or longer) time scales. We find that for an idealized fjord (without shelf-driven circulation), subglacial runoff produces a thin, strong, and warm down-fjord current in the upper part of the water column, balanced by a thick and slow up-fjord current at greater depth. Although submarine melt rates increase with runoff due to higher melt rates where the plume is in contact with the ice front, we find that annual submarine melt rate across the ice front is relatively insensitive to variability in annual runoff. Better knowledge of the spatial distribution of runoff, controls on melt rate in those areas not directly in contact with plumes, and feedback mechanisms linking submarine melting and iceberg calving are necessary to more fully understand the sensitivity of glacier mass balance to runoff-driven fjord circulation.Publisher PDFPeer reviewe

    Influence of glacier runoff and near-terminus subglacial hydrology on frontal ablation at a large Greenlandic tidewater glacier

    Get PDF
    Charlie Bunce is supported by a NERC DTP studentship (NE/L002558/1). Ben Davison is funded by the Scottish Alliance for Geoscience, Environment and Society (SAGES) and University of St. Andrews. We acknowledge field and research grants from the RGS-IBG postgraduate research fund and Mackay/Weir Greenland Fund (University of Edinburgh) awarded to Charlie Bunce and RGS-IBG postgraduate research fund, Mackay/Weir Greenland Fund (University of Edinburgh) and Centenary Funding (University of Edinburgh) awarded to Alexis Moyer (University of Edinburgh).Frontal ablation from tidewater glaciers is a major component of the total mass loss from the Greenland ice sheet. It remains unclear, however, how changes in atmospheric and oceanic temperatures translate into changes in frontal ablation, in part due to sparse observations at sufficiently high spatial and temporal resolution. We present high-frequency time-lapse imagery (photos every 30 min) of iceberg calving and meltwater plumes at Kangiata Nunaata Sermia (KNS), southwest Greenland, during June–October 2017, alongside satellite-derived ice velocities and modelled subglacial discharge. Early in the melt season, we infer a subglacial hydrological network with multiple outlets that would theoretically distribute discharge and enhance undercutting by submarine melt, an inference supported by our observations of terminus-wide calving during this period. During the melt season, we infer hydraulic evolution to a relatively more channelised subglacial drainage configuration, based on meltwater plume visibility indicating focused emergence of subglacial water; these observations coincide with a reduction in terminus-wide calving and transition to an incised planform terminus geometry. We suggest that temporal variations in subglacial discharge and near-terminus subglacial hydraulic efficiency exert considerable influence on calving and frontal ablation at KNS.Publisher PDFPeer reviewe

    Modelling the effect of submarine iceberg melting on glacier-adjacent water properties

    Get PDF
    Funding: This research has been supported by the Scottish Alliance for Geoscience, Environment and Society and the University of St Andrews (PhD studentship).The rate of ocean-driven retreat of Greenland's tidewater glaciers remains highly uncertain in predictions of future sea level rise, in part due to poorly constrained glacier-adjacent water properties. Icebergs and their meltwater contributions are likely important modifiers of fjord water properties, yet their effect is poorly understood. Here, we use a 3-D ocean circulation model, coupled to a submarine iceberg melt module, to investigate the effect of submarine iceberg melting on glacier-adjacent water properties in a range of idealised settings. Submarine iceberg melting can modify glacier-adjacent water properties in three principal ways: (1) substantial cooling and modest freshening in the upper ∼50 m of the water column; (2) warming of Polar Water at intermediate depths due to iceberg melt-induced upwelling of warm Atlantic Water and; (3) warming of the deeper Atlantic Water layer when vertical temperature gradients through this layer are steep (due to vertical mixing of warm water at depth) but cooling of the Atlantic Water layer when vertical temperature gradients are shallow. The overall effect of iceberg melt is to make glacier-adjacent water properties more uniform with depth. When icebergs extend to, or below, the depth of a sill at the fjord mouth, they can cause cooling throughout the entire water column. All of these effects are more pronounced in fjords with higher iceberg concentrations and deeper iceberg keel depths. These iceberg melt-induced changes to glacier-adjacent water properties will reduce rates of glacier submarine melting near the surface, increase them in the Polar Water layer, and cause typically modest impacts in the Atlantic Water layer. These results characterise the important role of submarine iceberg melting in modifying ice sheet-ocean interaction and highlight the need to improve representations of fjord processes in ice sheet scale models.Publisher PDFPeer reviewe

    Controls on the transport of oceanic heat to Kangerdlugssuaq Glacier, East Greenland

    Get PDF
    Greenland's marine-terminating glaciers may be sensitive to oceanic heat, but the fjord processes controlling delivery of this heat to glacier termini remain poorly constrained. Here we use a three-dimensional numerical model of Kangerdlugssuaq Fjord, East Greenland, to examine controls on fjord/shelf exchange. We find that shelf-forced intermediary circulation can replace up to ~25% of the fjord volume with shelf waters within 10 d, while buoyancy-driven circulation (forced by subglacial runoff from marine-terminating glaciers) exchanges ~10% of the fjord volume over a 10 d period under typical summer conditions. However, while the intermediary circulation generates higher exchange rates between the fjord and shelf, the buoyancy-driven circulation is consistent over time hence more efficient at transporting water along the full length of the fjord. We thus find that buoyancy-driven circulation is the primary conveyor of oceanic heat to glaciers during the melt season. Intermediary circulation will however dominate during winter unless there is sufficient input of fresh water from subglacial melting. Our findings suggest that increasing shelf water temperatures and stronger buoyancy-driven circulation caused the heat available for melting at Kangerdlugssuaq Glacier to increase by ~50% between 1993–2001 and 2002–11, broadly coincident with the onset of rapid retreat at this glacier

    Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems

    Get PDF
    We use a combination of field observations and hydrological modelling to examine the mechanisms through which variability in meltwater input affects ice motion at a land-terminating Greenlandic outlet glacier. We find a close agreement between horizontal ice velocity, vertical ice velocity and modelled subglacial water pressure over the course of a melt season. On this basis, we argue that variation in horizontal and vertical ice velocity primarily reflects the displacement of basal ice during periods of cavity expansion and contraction, a process itself driven by fluctuations in basal water pressure originating in subglacial channels. This process is not captured by traditional sliding laws linking water pressure and basal velocity, which may hinder the simulation of realistic diurnal to seasonal variability in ice velocity in coupled models of glacial hydrology and dynamics

    Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling

    Get PDF
    Understanding the drivers of recent change at Greenlandic tidewater glaciers is of great importance if we are to predict how these glaciers will respond to climatic warming. A poorly constrained component of tidewater glacier processes is the near-terminus subglacial hydrology. Here we present a novel method for constraining near-terminus subglacial hydrology with application to marine-terminating Kangiata Nunata Sermia in South-west Greenland. By simulating proglacial plume dynamics using buoyant plume theory and a general circulation model, we assess the critical subglacial discharge, if delivered through a single compact channel, required to generate a plume that reaches the fjord surface. We then compare catchment runoff to a time series of plume visibility acquired from a time-lapse camera. We identify extended periods throughout the 2009 melt season where catchment runoff significantly exceeds the discharge required for a plume to reach the fjord surface, yet we observe no plume. We attribute these observations to spatial spreading of runoff across the grounding line. Persistent distributed drainage near the terminus would lead to more spatially homogeneous submarine melting and may promote more rapid basal sliding during warmer summers, potentially providing a mechanism independent of ocean forcing for increases in atmospheric temperature to drive tidewater glacier acceleration

    A temperate former West Antarctic ice sheet suggested by an extensive zone of bed channels

    Get PDF
    Several recent studies predict that the West Antarctic Ice Sheet will become increasingly unstable under warmer conditions. Insights on such change can be assisted through investigations of the subglacial landscape, which contains imprints of former ice-sheet behavior. Here, we present radio-echo sounding data and satellite imagery revealing a series of ancient large sub-parallel subglacial bed channels preserved in the region between the Möller and Foundation Ice Streams, West Antarctica. We suggest that these newly recognized channels were formed by significant meltwater routed along the icesheet bed. The volume of water required is likely substantial and can most easily be explained by water generated at the ice surface. The Greenland Ice Sheet today exemplifies how significant seasonal surface melt can be transferred to the bed via englacial routing. For West Antarctica, the Pliocene (2.6–5.3 Ma) represents the most recent sustained period when temperatures could have been high enough to generate surface melt comparable to that of present-day Greenland. We propose, therefore, that a temperate ice sheet covered this location during Pliocene warm periods

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore