116 research outputs found

    Partnering with pediatric patients and families in high reliability to identify and reduce preventable safety events

    Get PDF
    Frameworks for designing highly reliable behaviors and tools to reduce preventable harm are the result of the continued effort to improve patient safety in healthcare. Evidence shows that there has been limited research on engaging patients and families in the development of safety and reliability efforts to achieve zero harm. Our aim was to develop a tool that engages patients and families in an effort to reduce preventable harm in a pediatric academic medical center

    Seeing red over black and white: popular and media representations of inter-racial relationships as precursors to racial violence

    Get PDF
    The recent murder in the UK of Anthony Walker attests to the lingering antipathy, indeed hostility, toward intimate inter-racial relationships, especially those involving black men and white women. Seventeen year-old Walker was brutally beaten then fatally assaulted with an axe to his head - the 'provocation' for the attack was this young black man’s relationship with his white girl friend. This paper assesses the historical and contemporary images and mythologies that continue to stigmatize inter-racial relationships. Specifically, we look at the representations disseminated through varied popular media forms. The paper suggests that these mediated constructs condition an environment that facilitates, if not encourages, violence against those in inter-racial relationships

    Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms

    Full text link
    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting warfighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wave may result in brain injury have been proposed - a thoracic mechanism, head acceleration and direct cranial transmission. These mechanisms need not be mutually exclusive. In this study, likely regions of interest for the first two mechanisms based on blast characteristics (positive pulse duration and peak effective overpressure) are developed using available data from blast experiments and related studies, including behind-armor blunt trauma and ballistic pressure wave studies. These related studies are appropriate to include because blast-like pressure waves are produced that result in neurological effects like those caused by blast. Results suggest that injury thresholds for each mechanism are dependent on blast conditions, and that under some conditions, more than one mechanism may contribute. There is a subset of blast conditions likely to result in TBI due to head acceleration and/or a thoracic mechanism without concomitant lung injury. These results can be used to guide experimental designs and compare additional data as they become available. Additional data are needed before actual probabilities or severity of TBI for a given exposure can be described.Comment: 11 page

    SNF5/INI1 Deficiency Redefines Chromatin Remodeling Complex Composition during Tumor Development

    Get PDF
    Malignant Rhabdoid Tumors (MRTs), a pediatric cancer that most frequently appears in the kidney and brain, generally lack SNF5 (SMARCB1/INI1), a subunit of the SWI/SNF chromatin-remodeling complex. Recent studies have established that multiple SWI/SNF complexes exist due to the presence or absence of different complex members. Therefore, the effect of SNF5 loss upon SWI/SNF complex formation was investigated in human MRT cells. MRT cells and primary human tumors exhibited reduced levels of many complex proteins. Furthermore, re-expression of SNF5 increased SWI/SNF complex protein levels without concomitant increases in mRNA. Proteomic analysis, using mass spectrometry, of MRT cells before and after SNF5 re-expression indicated the recruitment of different components into the complex along with the expulsion of others. IP-Western blotting confirmed these results and demonstrated similar changes in other MRT cell lines. Finally, reduced expression of SNF5 in normal human fibroblasts led to altered levels of these same complex members. These data establish that SNF5 loss during MRT development alters the repertoire of available SWI/SNF complexes, generally disrupting those associated with cellular differentiation. These findings support a model where SNF5 inactivation blocks the conversion of growth promoting SWI/SNF complexes to differentiation inducing ones. Therefore, restoration of these complexes in tumors cells provides an attractive approach for the treatment of malignant rhabdoid tumors

    Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Get PDF
    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel

    Origins of Spatial Working Memory Deficits in Schizophrenia: An Event-Related fMRI and Near-Infrared Spectroscopy Study

    Get PDF
    Abnormal prefrontal functioning plays a central role in the working memory (WM) deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI). We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS) using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased ‘false memory’ errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased “false memory” errors and accompanying bilateral prefrontal activation in schizophrenia suggest that the etiology of memory errors must be considered when comparing group performances. Finally, the concordance of fMRI and NIRS data supports NIRS as an alternative functional neuroimaging method for psychiatric research

    A survey and panel discussion of the effects of the COVID-19 pandemic on paediatric urological productivity, guideline adherence and provider stress

    Get PDF
    Introduction The COVID-19 pandemic has led to an unprecedented need to re-organise and re-align priorities for all surgical specialties. Despite the current declining numbers globally, the direct effects of the pandemic on institutional practices and on personal stress and coping mechanisms remains unknown. The aims of this study were to assess the effect of the pandemic on daily scheduling and work balances, its effects on stress, and to determine compliance with guidelines and to assess whether quarantining has led to other areas of increased productivity. Methods A trans-Atlantic convenience sample of paediatric urologists was created in which panellists (Zoom) discussed the direct effects of the COVID-19 pandemic on individual units, as well as creating a questionnaire using a mini-Delphi method to provide current semi-quantitative data regarding practice, and adherence levels to recently published risk stratification guidelines. They also filled out a Perceived Stress Scale (PSS) questionnaire to assess contemporary pandemic stress levels. Results There was an 86% response rate from paediatric urologists. The majority of respondents reported near complete disruption to planned operations (70%), and trainee education (70%). They were also worried about the effects of altered home-lives on productivity (<= 90%), as well as a lack of personal protective equipment (57%). The baseline stress rate was measured at a very high level (PSS) during the pandemic. Adherence to recent operative guidelines for urgent cases was 100%. Conclusion This study represents a panel discussion of a number of practical implications for paediatric urologists, and is one of the few papers to assess more pragmatic effects and combines opinions from both sides of the Atlantic. The impact of the pandemic has been very significant for paediatric urologists and includes a decrease in the number of patients seen and operated on, decreased salary, increased self-reported stress levels, substantially increased telemedicine usage, increased free time for various activities, and good compliance with guidelines and hospital management decisions

    Evolving concepts on the age-related changes in “muscle quality”

    Get PDF
    The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term “muscle quality” to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system—starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers—that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power)

    Mechanisms of the noxious inflammatory cycle in cystic fibrosis

    Get PDF
    Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis
    corecore