569 research outputs found

    Self-recording portable soil penetrometer

    Get PDF
    A lightweight portable penetrometer for testing soil characteristics is described. The penetrometer is composed of a handle, data recording, and probe components detachably joined together. The data recording component has an easily removed recording drum which rotates according to the downward force applied on the handle, and a stylus means for marking the drum along its height according to the penetration depth of probe into the soil

    Supramolecular assemblies involving metal organic ring interactions: Heterometallic Cu(II)-Ln(III) two dimensional coordination polymers

    Get PDF
    Three isostructural two-dimensional coordination polymers of the general formula [Ln2(CuL)3(H2O)9]$5.5H2O, where Ln is La (1), Nd (2), and Gd (3), have been synthesized and isolated from aqueous solutions and their single-crystal structures determined by X-ray diffraction. The supramolecular interaction between the non-aromatic metallorings plays an important role in stabilizing the structure of these compounds. The thermal stability, reversible solvent uptake, electronic properties and magnetic studies of these compounds are also reported

    Apollo 12 Soil Mechanics Investigation

    Get PDF
    During the sojourn of the second manned spacecraft on the moon in November 1969, the astronauts C. Conrad and A. Beau performed a number of tasks of interest from a soil mechanics point of view. They crossed the lunar surface, penetrating it with a variety of objects including core tube sampling devices, and visited an unmanned Surveyor spacecraft which had landed on and communicated from the moon 31 months previously. The mechanical behaviour of the lunar soil during these activities bas been analysed and is found to be consistent with the properties of a slightly cohesive medium dense granular soil (under lunar gravity) as deduced from previous Surveyor experiments. The grain size distribution and mechanical behaviour of the lunar soil samples which were brought back to Earth are also examined

    Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage

    Get PDF
    20 páginas, 4 figuras, 3 tablas y 7 tablas en material suplementario.Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.This work was performed in partial fulfillment of the requirements for the PhD degree for Cristina Herrera at Universidad de Costa Rica.Peer reviewe

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade

    Large genomic rearrangements in the CFTR gene contribute to CBAVD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By performing extensive scanning of whole coding and flanking sequences of the <it>CFTR (Cystic Fibrosis Transmembrane Conductance Regulator</it>) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole <it>CFTR </it>locus in the 32 CBAVD patients with only one or no mutation.</p> <p>Methods</p> <p>We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.</p> <p>Results</p> <p>We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or <it>CFTRdele2</it>], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or <it>CFTRdele 22_24</it>], in two males carrying a typical CBAVD mutation on the other parental <it>CFTR </it>allele. We present the first bioinformatic tool for exon phasing of the <it>CFTR </it>gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.</p> <p>Conclusion</p> <p>Identification of large rearrangements further expands the <it>CFTR </it>mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.</p

    Persistent DNA Damage after High Dose In Vivo Gamma Exposure of Minipig Skin

    Get PDF
    Exposure to high doses of ionizing radiation (IR) can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2) of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF) formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of <1% of keratinocytes at 28-70 days. The latter contained large RIFs that included ATM-p, indicating the accumulation of complex DNA damage. At 96 days most of the cells with RIFs had disappeared. The frequency of active-caspase-3-positive apoptotic cells was 17-fold increased 3 days after IR and remained >3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+) were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios

    Beyond Repair Foci: DNA Double-Strand Break Repair in Euchromatic and Heterochromatic Compartments Analyzed by Transmission Electron Microscopy

    Get PDF
    DNA double-strand breaks (DSBs) generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent) and heterochromatin (electron-dense) in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer) are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads) may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads), occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing severe chromatin disruptions. Imperfect restoration of chromatin configurations may leave DSB-induced epigenetic memory of damage with potentially pathological repercussions

    Temporal evolution and correlations of optical activity indicators measured in Sun-as-a-star observations

    Get PDF
    A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant number ST/R000824/1.Context. Understanding stellar activity in solar-type stars is crucial for the physics of stellar atmospheres as well as for ongoing exoplanet programmes. Aims. We aim to test how well we understand stellar activity using our own star, the Sun, as a test case. Methods. We performed a detailed study of the main optical activity indicators (Ca II H & K, Balmer lines, Na I D1 D2, and He I D3) measured for the Sun using the data provided by the HARPS-N solar-telescope feed at the Telescopio Nazionale Galileo. We made use of periodogram analyses to study solar rotation, and we used the pool variance technique to study the temporal evolution of active regions. The correlations between the different activity indicators as well as the correlations between activity indexes and the derived parameters from the cross-correlation technique are analysed. We also study the temporal evolution of these correlations and their possible relationship with indicators of inhomogeneities in the solar photosphere like sunspot number or radio flux values. Results. The value of the solar rotation period is found in all the activity indicators, with the only exception being Hδ. The derived values vary from 26.29 days (Hγ line) to 31.23 days (He I). From an analysis of sliding periodograms we find that in most of the activity indicators the spectral power is split into several “bands” of periods around 26 and 30 days. They might be explained by the migration of active regions between the equator and a latitude of ∼30°, spot evolution, or a combination of both effects. A typical lifetime of active regions of approximately ten rotation periods is inferred from the pooled variance diagrams, which is in agreement with previous works. We find that Hα, Hβ, Hγ, Hϵ, and He I show a significant correlation with the S index. Significant correlations between the contrast, bisector span, and the heliocentric radial velocity with the activity indexes are also found. We show that the full width at half maximum, the bisector, and the disc-integrated magnetic field correlate with the radial velocity variations. The correlation of the S index and Hα changes with time, increasing with larger sun spot numbers and solar irradiance. A similar tendency with the S index and radial velocity correlation is also present in the data. Conclusions. Our results are consistent with a scenario in which higher activity favours the correlation between the S index and the Hα activity indicators and between the S index and radial velocity variations.PostprintPeer reviewe

    An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm

    Get PDF
    Thoracic aortic aneurysm (TAA) has been associated with mutations affecting members of the TGF-β signaling pathway, or components and regulators of the vascular smooth muscle cell (VSMC) actomyosin cytoskeleton. Although both clinical groups present similar phenotypes, the existence of potential common mechanisms of pathogenesis remain obscure. Here we show that mutations affecting TGF-β signaling and VSMC cytoskeleton both lead to the formation of a ternary complex comprising the histone deacetylase HDAC9, the chromatin-remodeling enzyme BRG1, and the long noncoding RNA MALAT1. The HDAC9–MALAT1–BRG1 complex binds chromatin and represses contractile protein gene expression in association with gain of histone H3-lysine 27 trimethylation modifications. Disruption of Malat1 or Hdac9 restores contractile protein expression, improves aortic mural architecture, and inhibits experimental aneurysm growth. Thus, we highlight a shared epigenetic pathway responsible for VSMC dysfunction in both forms of TAA, with potential therapeutic implication for other known HDAC9-associated vascular diseases
    corecore