26 research outputs found

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    Less Bone Loss With Maraviroc- Versus Tenofovir-Containing Antiretroviral Therapy in the AIDS Clinical Trials Group A5303 Study

    Get PDF
    Background. There is a need to prevent or minimize bone loss associated with antiretroviral treatment (ART) initiation. We compared maraviroc (MVC)- to tenofovir disoproxil fumarate (TDF)–containing ART

    Evaluation of amendments to control phosphorus losses in runoff from pig slurry applications to land

    No full text
    If spread in excess of crop requirements, incidental phosphorus (P) losses from agriculture can lead to eutrophication of receiving waters. The use of amendments in targeted areas may help reduce the possibility of surface runoff of nutrients. The aim of this study was to identify amendments which may be effective in reducing incidental dissolved reactive phosphorus (DRP) losses in surface runoff from land applied pig slurry. For this purpose, the DRP losses under simulated conditions across the surface of intact grassland soil cores, loaded with unamended and amended slurry at a rate equivalent to 19 kg Pha(-1), were determined over a 30h period. The effectiveness of the amendments at reducing DRP in overlying water were (in decreasing order): alum (86%), flue gas desulfurization by-product (FGD) (74%), poly-aluminum (Al) chloride (PAC) (73%), ferric chloride (71%), fly ash (58%), and lime (54%). FGD was the most costly of all the treatments (7.64 pound/m3 for 74% removal). Ranked in terms of feasibility, which takes into account effectiveness, cost, and other potential impediments to use, they were: alum, ferric chloride, PAC, fly ash, lime, and FGD

    Impact of biochar addition to soil on greenhouse gas emissions following pig manure application

    Get PDF
    The application of biochar produced from wood and crop residues, such as sawdust, straw, sugar bagasse and rice hulls, to highly weathered soils under tropical conditions has been shown to influence soil greenhouse gas (GHG) emissions. However, there is a lack of data concerning GHG emissions from soils amended with biochar derived from manure, and from soils outside tropical and subtropical regions. The objective of this study was to quantify the effect on emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) following the addition, at a rate of 18 t ha-1, of two different types of biochar to an Irish tillage soil. A soil column experiment was designed to compare three treatments (n=8): (1) non-amended soil (2) soil mixed with biochar derived from the separated solid fraction of anaerobically digested pig manure and (3) soil mixed with biochar derived from Sitka Spruce (Picea sitchensis). The soil columns were incubated at 10 oC and 75 % relative humidity, and leached with 80 mL distilled water, twice per week. Following 10 weeks of incubation, pig manure, equivalent to 170 kg nitrogen ha-1 and 36 kg phosphorus ha-1, was applied to half of the columns in each treatment (n=4). Gaseous emissions were analysed for 28 days following manure application. Biochar addition to the soil increased N2O emissions in the pig manure-amended column, most likely as a result of increased denitrification caused by higher water filled pore space and organic carbon (C) contents. Biochar addition to soil also increased CO2 emissions. This was caused by increased rates of C mineralisation in these columns, either due to mineralisation of the labile C added with the biochar, or through increased mineralisation of the soil organic matter

    The Impact of Biochar Addition on Nutrient Leaching and Soil Properties from Tillage Soil Amended with Pig Manure

    No full text
    Abstract The application of pig manure to a tillage soil can result in pollution of surface and groundwater bodies. Countries in the European Union are required to comply with the Water Framework Directive, which states that all countries should attain at least &quot;good status&quot; surface and ground water quality by 2015. Amendment of soil with biochar has previously been shown to reduce nutrient leaching and improve soil properties. The objectives of this laboratory study were to investigate if the application of two types of biochar at a rate of 18 t ha −1 (a) reduced leaching of carbon (C), nitrogen (N) and phosphorus (P) from a low P Index tillage soil amended with pig manure and (b) affected the soil properties before and after pig manure application. Three treatments were examined as follows: (a) non-amended soil (the study control), (b) soil mixed with biochar from the separated solid fraction of anaerobically digested pig manure, and (c) of soil mixed with biochar from Sitka Spruce. Columns, filled with sieved soil (&lt;2 mm) and biochar (&lt;2 mm), were incubated for 30 weeks at 10°C and 75 % relative humidity and leached with 160 mL distilled water per week. Pig manure, equivalent to 170 kg N ha −1 and 36 kg P h

    Chemical amendment of pig slurry: control of runoff related risks due to episodic rainfall events up to 48 h after application

    No full text
    Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0 +/- 0.59 mm h(-1). Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8 % Al2O3) applied at a rate of 0.88:1 [Al/ total phosphorus (TP)], (2) commercial-grade liquid ferric chloride (38 % FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p &amp;lt; 0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry

    Chemical amendment of pig slurry: control of runoff related risks due to episodic rainfall events up to 48 h after application

    Get PDF
    peer-reviewedLosses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0±0.59 mm h-1. Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al/total phosphorus (TP)] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p<0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry.Irish Research Council for Science, Engineering and Technology (IRCSET) - EMBARK Scholarshi

    Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate

    Get PDF
    peer-reviewedThe effectiveness of chemical amendment of pig slurry to ameliorate phosphorus (P) losses in runoff is well studied, but research mainly has concentrated only on the runoff pathway. The aims of this study were to investigate changes to leachate nutrient losses, soil properties and greenhouse gas (GHG) emissions due to the chemical amendment of pig slurry spread at 19 kg total phosphorus (TP), 90 kg total nitrogen (TN), and 180 kg total carbon (TC) ha-1. The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:TP] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. Columns filled with sieved soil were incubated for 8 mo at 10oC and were leached with 160 ml (19 mm) distilled water wk-1. All amendments reduced the Morgan’s phosphorus and water extractable P content of the soil to that of the soil-only treatment, indicating that they have the ability to reduce P loss in leachate following slurry application. There were no significant differences between treatments for nitrogen (N) or carbon (C) in leachate or soil, indicating no deleterious impact on reactive N emissions or soil C cycling. Chemical amendment posed no significant change to GHG emissions from pig slurry, and in the cases of alum and PAC, reduced cumulative N2O and CO2 losses. Chemical amendment of land applied pig slurry can reduce P in runoff without any negative impact on nutrient leaching and GHG emissions. Future work must be conducted to ascertain if more significant reductions in GHG emissions are possible with chemical amendments.Irish Research Council for Science, Engineering and Technology (IRCSET)- EMBARK scholarshi
    corecore