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Background. There is a need to prevent or minimize bone loss associated with antiretroviral treatment (ART)
initiation. We compared maraviroc (MVC)- to tenofovir disoproxil fumarate (TDF)–containing ART.

Methods. This was a double-blind, placebo-controlled trial. ART-naive subjects with human immunodeficiency
virus type 1 RNA load (viral load [VL]) >1000 copies/mL and R5 tropism were randomized to MVC 150 mg or TDF
300 mg once daily (1:1), stratified by VL <100 000 or ≥100 000 copies/mL and age <30 or ≥30 years. All subjects
received darunavir 800 mg, ritonavir 100 mg, and emtricitabine 200 mg daily. Dual-energy X-ray absorptiometry
scanning was done at baseline and week 48. The primary endpoint was percentage change in total hip bone mineral
density (BMD) from baseline to week 48 in the as-treated population.

Results. We enrolled 262 subjects. A total of 259 subjects (130 MVC, 129 TDF) contributed to the analyses (91%
male; median age, 33 years; 45% white, 30% black, 22% Hispanic). Baseline median VL was 4.5 log10 copies/mL and
CD4 count was 390 cells/µL. The decline in hip BMD (n = 115 for MVC, n = 109 for TDF) at week 48 was less with
MVC (median [Q1, Q3] of −1.51% [−2.93%, −0.11%] vs −2.40% [−4.30%, −1.32%] for TDF (P < .001). Lumbar
spine BMD decline was also less with MVC (median −0.88% vs −2.35%; P < .001). Similar proportions of subjects in
both arms achieved VL ≤50 copies/mL in as-treated and ITT analyses.

Conclusions. MVC was associated with less bone loss at the hip and lumbar spine compared with TDF. MVC
may be an option to attenuate ART-associated bone loss.
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Bone mineral density (BMD) declines by 2%–6% in the
2 years following antiretroviral therapy (ART) initia-
tion, and the magnitude depends in part on the ART

regimen [1–5]. Use of tenofovir disoproxil fumarate
(TDF) has been linked to a 1%–2% greater bone loss
than other nucleos(t)ide reverse transcriptase inhibitors
(NRTIs) [3, 5–8]. The bone loss after ART initiation is
greatest within the first 24–48 weeks [5, 9, 10], suggest-
ing that it may be linked to systemic immunologic and
inflammatory changes that are also pronounced in the
initial weeks to months after ART initiation [11, 12].

Maraviroc (MVC) has virologic activity against R5-
tropic human immunodeficiency virus type 1 (HIV-1)
through inhibition of CC chemokine receptor 5
(CCR5), the main coreceptor for HIV-1 [13]. Studies
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of potential immunomodulatory and antiinflammatory effects
of MVC have produced conflicting results [14–18]. CCR5 is ex-
pressed on both osteoblasts and osteoclasts, and one of CCR5’s
primary ligands is macrophage inflammatory protein 1 alpha
(MIP-1α), which has been shown to increase osteoclastogenesis
and inhibit osteoblast function in preclinical models [19–21].
CCR5 may play an important role in the signaling between os-
teoblasts and osteoclasts [19]. Thus, it is plausible that MVC
would have a beneficial effect on bone mineralization in the
context of ART initiation.

The AIDS Clinical Trials Group (ACTG) study A5303 was
conducted to investigate the effects of MVC on bone loss
after ART initiation in treatment-naive HIV-1–infected pa-
tients. Our a priori hypothesis was that initiating a MVC-
containing ART regimen would be associated with less bone
loss compared to a regimen containing TDF. We also compared
the antiretroviral efficacy of the regimens.

METHODS

Study Design
A5303 was a phase 2, prospective, double-blind, placebo-
controlled, multicenter, 48-week clinical trial conducted at 33
ACTG and 4 Adolescent Trials Network research sites in the
United States. Eligible subjects were ART-naive patients (aged
≥18 years) with plasma HIV-1 RNA concentration (viral load
[VL]) >1000 copies/mL and R5 tropism by Trofile phenotypic
assay (Monogram Biosciences, South San Francisco, Califor-
nia). The inclusion and exclusion criteria are listed at Clinical-
Trials.gov (NCT01400412). The institutional review board
of each study site approved the protocol. Each participant
provided written informed consent.

Study Procedures
Eligible subjects were randomized (1:1) to MVC 150 mg plus
TDF placebo or TDF 300 mg plus MVC placebo, stratified by
screening VL <100 000 or ≥100 000 copies/mL and age <30
or ≥30 years. Each subject also received darunavir 800 mg, rito-
navir 100 mg, and emtricitabine 200 mg. Although the recom-
mended dose of MVC is 150 mg twice daily when combined
with ritonavir-boosted darunavir (DRV/r) [22], we selected a
dose of 150 mg once daily based on pharmacokinetic and clin-
ical studies supporting this lower dosing [23–27]. Subjects were
instructed to take the study drugs with food once daily.

Within 4 weeks prior to randomization, each subject under-
went a baseline dual-energy X-ray absorptiometry (DXA) scan
of the left hip and lumbar spine (L1–L4) at the study site, using
either a Lunar (GE Healthcare, Fairfield, Connecticut) or Holo-
gic (Hologic Incorporated, Bedford, Massachusetts) DXA scan-
ner. A second DXA scan was performed at week 48 (±4 weeks)
using the same DXA scanning system. For subjects who had a

permanent change in the MVC or TDF component of their ran-
domized regimen or who prematurely discontinued the study,
DXA scanning was performed at the time of discontinuation.
All DXA scans were read centrally at the Body Composition
Analysis Center at Tufts University. The European Spine Phan-
tom was used for cross-calibration of DXA machines and quality
assurance at each site. The z scores—the number of standard de-
viations a subject’s BMD falls from the mean BMD—were calcu-
lated from the site-specific BMD measures using normative data
matched for age, sex, and race. The z scores were chosen over t
scores given the relatively young age of the study population [28].

Routine study visits after randomization occurred at week 4
(±7 days), and weeks 16, 24, 36, and 48 (all ±14 days). Viral load
(Abbott RealTime assay HIV-1, lower detection limit of 40 cop-
ies/mL), CD4 cell count, hematology, liver function tests, and
blood chemistry were measured at each visit. Adherence to
study medications was assessed by self-report at all study visits
postentry except week 36.

Study Endpoints
The primary endpoint was the percentage of change in total
hip BMD frombaseline toweek 48. Themain secondary endpoint
was the percentage of change in lumbar spine BMD from baseline
to week 48. Other secondary endpoints included time to virologic
failure, proportion of subjects with VL <50 copies/mL, changes in
CD4 cell count from baseline, emergent resistance during failure,
and incidence plus severity of adverse events. Virologic failurewas
defined as 2 consecutive VL results >1000 copies/mL at or after
week 16 and before week 24, or >200 copies/mL at or after week
24. A confirmatory VL measurement was obtained within
30 days of receiving an initial virologic failure result. Subjects
who discontinued the study with an unconfirmed virologic failure
result were considered to have virologic failure at the visit week of
the initial result. Time to virologic failure was defined as the time
from study entry to the visit week of the initial failure; subjects
without evidence of virologic failure had their time to virologic
failure censored at the study week of their last VL measurement.
Emergent resistance was assessed using plasma samples obtained
at the virologic failure confirmation visit by genotyping theHIV-1
reverse transcriptase and protease genes.

Statistical Analyses
The target sample size of 127 subjects per arm (total of 254) pro-
vided 90% power to detect a difference of 1.5% or larger in total
hip BMD change from baseline to week 48 between the 2 arms,
assuming that 20% of subjects would be nonevaluable due to
scan failure or loss to follow-up. This sample size also provided
87% power to claim noninferiority of the MVC arm for the vi-
rologic efficacy aim, assuming a cumulative probability of viro-
logic failure of 15% in both arms by week 48, a maximum
allowable difference of 15%, and 10% loss to follow-up.
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The primary analysis was as-treated and included only sub-
jects who remained on their randomized treatment without any
interruption of >10 weeks. Intent-to-treat (ITT) analyses that
included outcomes regardless of status on randomized treat-
ment were also performed using 3 different approaches to han-
dle missing BMD data. The first approach assumed that missing
data occurred completely at random, and thus only included
subjects with total hip BMD measurements available at both
baseline and week 48 (complete case). The other approaches
used to handle missing data assumed informative missing

data. Specifically, missing week 48 measurements were imputed
with (1) the last available DXA scan measurement while on ran-
domized regimen after at least 12 weeks of study treatment (last
observation carried forward), and (2) an arbitrary value less
than any percentage week 48 change from baseline, that is, larg-
est decrease from baseline (worst rank). Stratified Wilcoxon
rank-sum tests were used to test for differences between the 2
treatment groups, stratified by age (<30 vs ≥30 years). Wilcoxon
signed-rank tests were used to test for within-treatment-group
changes greater than zero; 95% confidence intervals (CIs) for

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) diagram. Abbreviations: BMD, bone mineral density; DRV/r, darunavir/ritonavir; DXA,
dual-energy X-ray absorptiometry; FTC, emtricitabine; IVDU, intravenous drug user; MVC, maraviroc; TDF, tenofovir disoproxil fumarate.
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median changes within treatment group were estimated using
distribution-free method via percentiles. Linear regression mod-
els were used to evaluate interactions between treatment arm and
age, baseline VL, and race/ethnicity (post hoc).

Product-limit estimates were used to estimate the cumulative
probability of virologic failure over time and its corresponding
95% CI for each treatment group. The difference in these estimat-
ed probabilities at week 48 was estimated with a 95% CI stratified
by VL at screening; stratum specific variances on the estimated 48-
week failure probability were used to define the stratum weights
and compared (upper bound) against the noninferiority boundary
of 15 percentage points. The proportion of subjects in each arm
with VL ≤50 copies/mL at weeks 24 and 48 was calculated using
the as-treated approach described above as well as 2 ITT analyses
(missing VL ignored; missing VL equals failure [>50 copies/mL]).

Analyses of CD4 count used the same as-treated population
as the BMD as-treated analysis. Safety analyses included all

subjects who started study treatment. All statistical tests were
2-sided and interpreted at the 5% nominal level of significance
without adjustment for multiple comparisons. Analyses were
conducted using SAS statistical software version 9.4.

RESULTS

Figure 1 shows the disposition of the 262 subjects enrolled in
the trial. Three subjects (all from the TDF arm) never initiated
study treatment and were excluded from all analyses. The ana-
lyzed population (N = 259 [130 MVC, 129 TDF]) was 91%
male, with a median age of 33 years; 45% non-Hispanic white
(white), 30% non-Hispanic black (black), and 22% Hispanic. At
baseline, median VL was 4.5 log10 copies/mL, and CD4 count
was 390 cells/µL. Baseline demographics and disease character-
istics were generally similar between the study arms, but there
was a chance imbalance with more black subjects and more

Table 1. Baseline Characteristics and Bone Mineral Density

Characteristic MVC (n = 130) TDF (n = 129) Total (N = 259)

Age, y

Median (Q1, Q3) 33 (26, 42) 33 (26, 42) 33 (26, 42)
<30 y 49 (38) 48 (37) 97 (37)

≥30 y 81 (62) 81 (63) 162 (63)

Sex
Male 115 (88) 120 (93) 235 (91)

Female 15 (12) 9 (7) 24 (9)

Race/ethnicity
White non-Hispanic 57 (44) 59 (46) 116 (45)

Black non-Hispanic 45 (35) 33 (26) 78 (30)

Hispanic 24 (18) 34 (26) 58 (22)
Other 4 (4) 3 (3) 7 (2)

HIV-1 RNA, log10 copies/mL, median (Q1, Q3) 4.59 (3.91, 5.07) 4.47 (4.02, 4.91) 4.50 (3.97, 5.00)

HIV-1 RNA, copies/mL
<100 000 92 (71) 102 (80) 194 (75)

≥100 000 38 (29) 26 (21) 64 (25)

CD4 count, cells/µL, median (Q1, Q3) 389 (295, 496) 392 (290, 518) 390 (294, 517)
Hepatitis C antibody positive 10 (8) 12 (9) 22 (8)

Creatinine clearance, mL/min

Median (Q1, Q3) 124 (105, 152) 126 (106, 139) 124 (106, 145)
>90 mL/min 90% 89% 90%

Body mass index, kg/m2, median (Q1, Q3) 25 (22, 29) 26 (23, 29) 25 (23, 29)

BMD, median (Q1, Q3)
Total hip BMD, g/cm2 1.05 (0.96, 1.18) 1.03 (0.95, 1.15) 1.04 (0.95, 1.17)

z score −0.2 (−0.9, 0.6) −0.1 (−0.8, 0.6) −0.1 (−0.8, 0.6)
Lumbar spine BMD, g/cm2 1.16 (1.03, 1.28) 1.11 (1.00, 1.20) 1.14 (1.02, 1.25)
z score −0.2 (−1.0, 0.6) −0.3 (−1.3, 0.6) −0.3 (−1.1, 0.6)

Femoral neck BMD, g/cm2 1.01 (0.88, 1.13) 0.94 (0.85, 1.07) 0.98 (0.86, 1.12)

z score 0.0 (−0.8, 0.8) −0.2 (−0.9, 0.6) −0.1 (−0.8, 0.7)

Data are presented as No. (%) unless otherwise specified.

Abbreviations: BMD, bone mineral density; HIV-1, human immunodeficiency virus type 1; MVC, maraviroc; TDF, tenofovir disoproxil fumarate.
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subjects with baseline VL >100 000 copies/mL in the MVC arm
(Table 1). Subjects in both study arms had similar baseline
BMD.

BMD Changes
The primary as-treated analysis of the percentage of change
from baseline to week 48 in hip BMD included 224 subjects
(115 subjects in the MVC group and 109 in the TDF group). As
shown in Figure 2A, there was a decline in hip BMD in both arms,
which was smaller in the MVC group (P < .001): the median (Q1,
Q3) percentage of change in BMD was −1.51% (−2.93%,
−0.11%) for the MVC group compared with −2.40%
(−4.30%, −1.32%) for the TDF group. Lumbar spine BMD
also declined less in the MVC group than in the TDF
group (P = .001); median (Q1, Q3) percentage of change
was −0.88% (−2.93%, 1.30%) for the MVC group and
−2.35% (−4.25%, −0.45%) for the TDF group. ITT analyses
yielded similar conclusions (all P < .001; data not shown).

Given the chance racial and VL imbalance at randomization,
a post hoc linear regression analysis adjusting for race (black vs
other) was performed. Following initial model diagnostics, 2
outlying data points were excluded. Analyses were adjusted
for age and baseline VL as well as baseline BMD at the relevant
body site. Although adjustment for age stratum, baseline VL,
and race/ethnicity did not alter the primary finding of a smaller
decline in hip BMD in the MVC group compared with TDF
(P≤ .001), a differential effect of MVC by race/ethnicity was ap-
parent (interaction between study treatment and race/ethnicity;
P = .034, Figure 3). This interaction appears to have been driven
by a smaller decline in BMDwithMVC among black participants
(Figure 2). The estimated difference between MVC vs TDF in
percentage of bone loss in hip over 48 weeks among nonblack
participants was 0.71% (95% CI, −0.13% to 1.55%; P = .096),
compared with 2.34% (95% CI, 1.10%–3.58%; P = .0003) in
black participants. The observed difference in BMD loss at the
spine between the MVC and TDF groups was larger in black par-
ticipants compared with nonblack participants; however, this dif-
ference was not statistically significant (P = .31). The estimated
difference between MVC vs TDF in percentage of spine BMD
loss over 48 weeks in nonblack participants was 1.15% (95%
CI, .13%–2.18%; P = .028) compared with 2.09% (95% CI,
.58%–3.61%; P = .007) in black participants. No evidence of treat-
ment interactions with age or baseline VL was apparent at either
the hip or spine (P > .59).

Efficacy and Safety
There were 14 virologic failures (8 in the MVC group and 6 in
the TDF group) by week 48, 10 of which were confirmed (8 in
the MVC group and 2 in the TDF group) and 4 (all in the TDF
arm) who were lost to follow-up after initial failure. The median
difference between the arms (MVC minus TDF) in the

Figure 2. Percentage of change in bone mineral density from baseline to
week 48 among all participants (A), nonblack participants (B), and non-His-
panic black participants (C). The line inside the box indicates the median
value. The lower and upper edges of the box indicate the first and third
quartiles (the 25th and 75th percentiles). The lower and upper whiskers
are the first and third quintiles ±1.5 times interquartile range. Stratified
Wilcoxon rank-sum tests were used to test for differences between the
2 treatment groups, stratified by age (<30 vs ≥30 years). Abbreviations:
MVC, maraviroc; TDF, tenofovir disoproxil fumarate.
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cumulative probability of virologic failure while on random-
ized treatment (as-treated) was 2% (95% CI, −4% to 5%),
which was well within the predefined noninferiority margin
(Table 2). In as-treated analysis, VL ≤50 copies/mL was
achieved in 85% and 93% of subjects in the MVC and TDF
arms, respectively, at week 24 (P = .061), whereas 94% had
VL ≤50 copies/mL in both arms at week 48 (P = .893). ITT
analyses yielded similar results (Table 2). Four subjects
(3 in the MVC group and 1 in the TDF group) underwent
successful genotyping, of whom 1 subject (on MVC) had
the M184V NRTI mutation and the polymorphic mixture
V118I/V. There were no protease inhibitor (PI) resistance-
associated mutations.

Significant within-group increases in CD4 count occurred
from baseline to week 48 in both groups (P < .001). The median
(Q1, Q3) increase in the MVC group was 234 (131, 327) cells/
µL, which was greater than the increase of 188 (94, 304) cells/µL
in the TDF group (P = .036). Both regimens were well tolerated.
Grade 3 adverse events occurred in 10% of subjects in the MVC
arm and 14% of those on TDF, whereas 2% and 3%, respective-
ly, experienced grade 4 adverse events (Supplementary Table 1).
There were no deaths.

DISCUSSION

We determined BMD changes in HIV-1–infected patients ini-
tiating MVC vs TDF, each combined with DRV/r and emtrici-
tabine. Similar to other studies [1–5], BMD declined over the
first 48 weeks in both treatment groups. However, the magni-
tude of the decline was less in the MVC arm, with a median
of −1.5% at the hip and −0.9% at the lumbar spine, compared
with −2.4% and −2.4%, respectively, in the TDF arm. These re-
sults are consistent with randomized trials of TDF- vs abacavir-
containing regimens that found approximately 1%–2% greater
BMD decline with TDF use [3, 5, 7, 8]. The results also recapit-
ulate the findings of a recent clinical trial of TDF vs tenofovir
alafenamide (TAF), an oral tenofovir prodrug that achieves
high intracellular levels of the active metabolite, tenofovir
diphosphate, while maintaining 90% lower plasma levels of te-
nofovir than TDF. At week 48, TAF combined with elvitegravir-
cobicistat resulted in −0.7% BMD loss at the hip and −1.3%
decline at the lumbar spine compared with −3.0% and −2.9%,
respectively, with TDF [29].

Post hoc analysis motivated by a chance racial imbalance at
randomization revealed that the difference in BMD loss with

Figure 3. Adjusted treatment effects on the percentage of change in hip (A) and spine (B) bone mineral density (BMD) from baseline to week 48 with 95%
confidence intervals (CIs). Following initial model diagnostics, 2 extreme outlying and influential data points were excluded: an extreme decrease (−32.1%)
in the maraviroc (MVC) group and extreme increase (+26.6%) in the tenofovir disoproxil fumarate (TDF) group. Estimates from simple linear regression
analyses are (1) unadjusted, (2) stratified by age (<30 y, ≥30 y) and baseline human immunodeficiency virus type 1 (HIV-1) RNA (<100 000, ≥100 000
copies/mL), (3) adjusted for baseline BMD at the specific site, (4) adjusted for race (nonblack vs non-Hispanic black), and (5) adjusted by race. Models
3–5 are also stratified by age and baseline HIV-1 RNA level; models 4 and 5 also adjust for baseline BMD.
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MVC compared to TDF was greater in black participants com-
pared with other racial/ethnic groups, reaching statistical signif-
icance at the hip but not the lumbar spine. This observation
appears to have been driven by less BMD loss with MVC
among black subjects.

Nonuse of TDF is the putative explanation for the lower
BMD decline in the MVC arm of our study. The mechanisms
of TDF’s negative impact on BMD remain uncertain, but may
include direct effects of tenofovir on bone cells, or indirect ef-
fects on calcium-phosphate homeostasis, resulting in inade-
quate bone mineralization [30, 31]. It is less clear whether
MVC had a protective effect, although the interaction between
BMD changes in the MVC arm and race is intriguing. Race was
not evaluated in a small (N = 27) 48-week study that showed a
2.1% increase in proximal femur BMD after switching from
virally suppressive triple ART to MVC 300 mg plus DRV/r
[32]. The divergence of MVC’s effect in racial/ethnic groups is
unlikely to be explained by any of the theoretical pathways for a
beneficial bone effect of MVC. One proposed pathway is that
MVC may modulate factors that contribute to skeletal deterio-
ration such as proinflammatory and immunomodulatory cyto-
kines [33–35]. The evidence on whether MVC attenuates
systemic immune activation and inflammation independent of
its virologic effects, however, remains mixed [14–16]. Another
hypothetical pathway for a beneficial skeletal effect of MVC in-
volves the proosteoclastogenic MIP-1α, a CCR5 ligand [19–21].
Because bone is continuously remodeled by bone-forming

osteoblasts and bone-resorbing osteoclasts, inhibition of MIP-
1α may tip the balance toward bone formation. Further exam-
ination of the effects of MVC on biomarkers of inflammation
and immune activation and the associations with BMD changes
and race/ethnicity is planned.

MVC was combined with emtricitabine and DRV/r in our
study. Emtricitabine has not been independently implicated in
bone loss, although its bone effects have not been previously
investigated to our knowledge. In contrast, use of some ritona-
vir-boosted PIs has been associated with more bone loss in mul-
tiple studies [3, 8, 36, 37]. In the randomized trial of 3 initial
regimens containing TDF and emtricitabine (A5260s), for ex-
ample, BMD loss at 96 weeks was comparable between DRV/r
and atazanavir/ritonavir recipients, whereas both of these
groups experienced a greater decline than the raltegravir
group [37]. Whereas the greater bone loss with boosted PIs has
been attributed to higher tenofovir levels when TDF and boosted
PIs are coadministered [38], the relationship between boosted PIs
and bone health is more complex and has not been fully elucidat-
ed. In A5224s, independent effects of atazanavir/ritonavir vs
efavirenz were seen in the lumbar spine but not the hip, and
the effect of TDF on bone did not differ between the atazana-
vir/ritonavir and efavirenz arms [3]. In vitro studies have
shown evidence of PI effects on osteoblast and osteoclast func-
tion, as well as inhibition of 1-α hydroxylase activity, which con-
verts 25-hydroxyvitamin D to bioactive 1,25-dihydroxyvitamin D
[39–41]. Studies of MVC-containing regimens that do not

Table 2. Cumulative Probability of Virologic Failure and Proportion With Human Immunodeficiency Virus Type 1 RNA ≤50 Copies/mL

Treatment
Group

Study
Week

(As-Treated) Cumulative Probability
of Virologic Failure, % (95% CI)a

Proportion With HIV-1 RNA ≤50 copies/mL, %

On-Treatment
ITT, Missing Date

Ignored
ITT, Missing Equals

Failure

MVC

16 0 (0–0)
24 4 (2–9) 85 85 83

36 5 (2–10)

48 5 (2–10) 94 93 86
TDF

16 1 (0–5)

24 2 (1–7) 93 93 87
36 2 (1–7)

48 3 (1–9) 94 92 81

95% CI for between-arm difference (MVC-TDF) at 24 wk
(−16%, 0%) (−16%, 0%) (−13%, 5%)

Between-arm difference (MVC-TDF) by 48 wkb 95% CI for between-arm difference (MVC-TDF) at 48 wk

2 (−4, 5) (−6%, 7%) (−6%, 8%) (−4%, 15%)

Abbreviations: CI, confidence interval; HIV-1, human immunodeficiency virus type 1; ITT, intent-to-treat; MVC, maraviroc; TDF, tenofovir disoproxil fumarate.
a Product limit estimate of the cumulative probability of virologic failure while on randomized treatment. Subjects without prior virologic failure are censored at the
earliest of discontinuation of randomized treatment or end of study.
b Stratified by screening HIV-1 RNA stratum.
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include boosted PIs and tenofovir may further illuminate the
interactions between MVC and bone loss.

An unapproved MVC dose of 150 mg daily was used in this
study. This dosing was based on several studies [23–27], and is
affirmed by our finding of similar virologic efficacy between the
experimental MVC regimen and the TDF-containing standard
of care. Of note, the MODERN (Maraviroc Once-Daily with
Darunavir Enhanced by Ritonavir in a New Regimen) study
was terminated prematurely due to inferiority of MVC 150
mg plus DRV/r 800/100 mg once daily vs the same TDF-
containing comparator used in our study [42]. Addition of
emtricitabine to MVC 150 mg plus DRV/r 800/100 mg in our
study likely contributed to the regimen’s impressive efficacy.
It is unknown whether conventional MVC dosing would ampli-
fy any beneficial effect of MVC or uncover untoward effects.
Another limitation of our study is the dearth of information
on the clinical significance of observed differences in BMD de-
cline between MVC vs TDF. However, cumulative TDF expo-
sure has been independently associated with osteoporotic
fracture [36]. We did not evaluate the impact of smoking and
alcohol use as these data were not collected prospectively. Final-
ly, the participants were relatively young (median age, 33 years)
and only 9% were female, limiting the study’s generalizability.

Taken together, our findings demonstrate BMD differences
that may be expected with MVC- vs TDF-based initial ART.
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Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
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materials are not copyedited. The contents of all supplementary data are the
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