10 research outputs found

    Homologous Recombination Is Stimulated by a Decrease in dUTPase in Arabidopsis

    Get PDF
    Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants

    Structure and function of Aspergillus niger laccase McoG

    Get PDF
    The ascomycete Aspergillus niger produces several multicopper oxidases, but their biocatalytic properties remain largely unknown. Elucidation of the crystal structure of A. niger laccase McoG at 1.7 Å resolution revealed that the C-terminal tail of this glycoprotein blocks the T3 solvent channel and that a peroxide ion bridges the two T3 copper atoms. Remarkably, McoG contains a histidine (His253) instead of the common aspartate or glutamate expected to be involved in catalytic proton transfer with phenolic compounds. The crystal structure of H253D at 1.5 Å resolution resembles the wild type structure. McoG and the H253D, H253A and H253N variants have similar activities with 2,2’-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid or N,N-dimethyl-p-phenylenediamine sulphate. However, the activities of H253A and H253N with 2-amino-4-methylphenol and 2-amino-4-methoxyphenol are strongly reduced compared to that of wild type. The redox potentials and electron transfer rates (ks) of wild type and variants were determined (McoG wt E°’ is +453 mV), and especially the reduced ks values of H253A and H253N show strong correlation with their low activity on phenolic compounds. In summary, our results suggest that the His253 adaptation of McoG can be beneficial for the conversion of phenolic compounds
    corecore