211 research outputs found

    YPAR, Critical Whiteness, and Generative Possibilities. A Response to “Sam and Cristina: A Dialogue Between a High School Teacher and Student about the Commoditization of People of Color”

    Get PDF
    In this response to the article by Tanner and Corrie, the authors provide three critiques of the methodology and theoretical framing of the study with the hopes of informing future scholarship and practice. Specifically, the three critiques addressed in this paper include the integration of CWS frameworks and YPAR methodology, the application and description of CWS and YPAR frameworks, and the role of power in the relationship between educator and student that served as the central medium for the study

    Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

    Get PDF
    Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML

    CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia.

    Get PDF
    Aberrant proliferation, symmetric self-renewal, increased survival, and defective differentiation of malignant blasts are key oncogenic drivers in acute myeloid leukemia (AML). Stem cell gene signatures predict poor prognosis in AML patients; however, with few exceptions, these deregulated molecular pathways cannot be targeted therapeutically. In this study, we demonstrate that the TNF superfamily ligand-receptor pair CD70/CD27 is expressed on AML blasts and AML stem/progenitor cells. CD70/CD27 signaling in AML cells activates stem cell gene expression programs, including the Wnt pathway, and promotes symmetric cell divisions and proliferation. Soluble CD27, reflecting the extent of CD70/CD27 interactions in vivo, was significantly elevated in the sera of newly diagnosed AML patients and is a strong independent negative prognostic biomarker for overall survival. Blocking the CD70/CD27 interaction by mAb-induced asymmetric cell divisions and differentiation in AML blasts and AML stem/progenitor cells inhibited cell growth and colony formation and significantly prolonged survival in murine AML xenografts. Importantly, hematopoietic stem/progenitor cells from healthy BM donors express neither CD70 nor CD27 and were unaffected by blocking mAb treatment. Therefore, targeting CD70/CD27 signaling represents a promising therapeutic strategy for AML

    Enasidenib-Induced Differentiation Syndrome in IDH2

    No full text
    • 

    corecore