24 research outputs found

    Perennialism and Modernism in Romanian National-Communism. An Ideological Dilemma?

    Get PDF
    Abstract: This article analyzes the theories of nationalism incorporated into the national-communist discourse active in Romania between 1965 and 1969. Although insisting upon its Marxist ideological core, Romanian nationalcommunist discourse did not, however, embrace the Marxist vision upon nations and nationalism, namely modernism. Furthermore, its vision in this regard, primordialist perenialism, was typical of right-wing, even extreme right-wing ideologies. How was that possible is the main question of the following pages

    Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability

    Get PDF
    Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region dur-ing the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two syn-onymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability (PDF Download Available). Available from: https://www.researchgate.net/publication/269250979_Zoogeography_of_epigean_freshwater_Amphipoda_Crustacea_in_Romania_fragmented_distributions_and_wide_altitudinal_variability [accessed Apr 20, 2016].We kindly thank Marius G. Berchi, Miklos Balint and Bogdan Horia for providing material, and to all the students that helped during the field work. An anonymous reviewer provided helpful comments on a previous version of the manuscript. This work was financially supported by the University Research National Council Agency of Romania (CNCS-UEFISCDI), exploratory research projects PCE-4 1458/2008 as well as by the Polish Ministry of Science and Higher Education, project N N303 579439. DCC was also supported by the Charles University in Prague (projects GAUK 1398214 and SVV 260088)

    Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus

    Get PDF
    Abstract Groundwater is an extreme environment due to its absence of light, resource scarcity and highly fragmentary nature. Successful groundwater colonizers underwent major evolutionary changes and exhibit eye and pigment loss (troglomorphies). Consequently, their chances of dispersal and survival in the well-connected surface waters are greatly decreased, resulting in significant endemism. The West Palaearctic subterranean amphipod genus Niphargus comprises hundreds of narrowly endemic and troglomorphic species. Nevertheless, a few are known to occur in surface waters, two of which, N. hrabei and N. valachicus, have extremely large ranges that even exceed those of many surface-water amphipods. We tested if this pattern results from a secondary colonization of the relatively well-connected epigean environment, and whether this ecological shift promoted the large-scale dispersal of these species. Results showed that despite their ecological and zoogeographic similarities, N. hrabei and N. valachicus are not closely related and independently colonized surface waters. Their phylogeographic patterns indicate Middle to Late Pleistocene dispersal episodes throughout the Danube lowlands, and relatively modest yet significant genetic differentiation among populations. Clustering based on morphology revealed that the two species are phenotypically closer to each other than they are to most other epigean congeners. We presume that the ecological shift to surface environments was facilitated by their ability to thrive in hypoxic waters where rheophilic competitors from the family Gammaridae cannot survive. In conclusion, our results indicate that adaptation to groundwater is not a one-way evolutionary path and that troglomorphic species can occasionally recolonize and widely disperse in surface waters

    The World Amphipoda Database: history and progress

    Get PDF
    We provide an overview of the World Amphipoda Database (WAD), a global species database that is part of the World Register of Marine Species (WoRMS). Launched in 2013, the database contains entries for over 10,500 accepted species names. Edited currently by 31 amphipod taxonomists, following WoRMS priorities, the WAD has at least one editor per major group. All accepted species are checked by the editors, as is the authorship available for all of the names. The higher classification is documented for every species and a type species is recorded for every genus name. This constitutes five of the 13 priorities for completion, set by WoRMS. In 2015, five LifeWatch grants were allocated for WAD activities. These included a general training workshop in 2016, together with data input for the superfamily Lysianassoidea and for a number of non-marine groups. Philanthropy grants in 2019 and 2021 covered more important gaps across the whole group. Further work remains to complete the linking of unaccepted names, original descriptions, and environmental information. Once these tasks are completed, the database will be considered complete for 8 of the 13 priorities, and efforts will continue to input new taxa annually and focus on the remaining priorities, particularly the input of type localities. We give an overview of the current status of the order Amphipoda, providing counts of the number of genera and species within each family belonging to the six suborders currently recognized

    Taming the terminological tempest in invasion science

    Get PDF
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Taming the terminological tempest in invasion science

    Get PDF
    Standardized terminology in science is important for clarity of interpretation and communication. In invasion science — a dynamic and quickly evolving discipline — the rapid proliferation of technical terminology has lacked a standardized framework for its language development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damages and interventions. A standardized framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardizing terminology across stakeholders remains a prevailing challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalized, 'pest') to propose a more simplified and standardized terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' — populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualizing 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (1) dispersal mechanism, (2) species origin, (3) population status, and (4) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Data from: Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability

    No full text
    Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region during the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two synonymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group

    Global distribution and diversity of alien Ponto-Caspian amphipods

    No full text
    The Ponto-Caspian region is an important donor of aquatic alien species throughout the Northern Hemisphere, many of which are amphipod crustaceans. Despite decades of ongoing spread and negative effects on native biota, a complete picture of the global diversity and distribution of these amphipods has yet to emerge, hampering efficient monitoring and predictions of future invasion pathways. Herein, we provide a comprehensive summary of alien species taxonomic and ecomorphological diversity, as well as high-resolution distribution maps and biogeographical patterns based on > 8000 global records. We find that up to 39 species in 19 genera and five families, belonging to all four currently recognized ecomorphs, are potentially alien, their diversity gradually decreasing with distance from the native region. Most species (62%) have limited distributions, 15% are widespread, and 23% exhibit intermediate ranges. We also find that regions adjacent to the native range are comparatively less well-sampled than more distant regions. Biogeographical clustering revealed three faunal provinces that largely correspond with the Southern, Central and Northern invasion corridors. We conclude that (1) alien amphipods are a representative subsample of the native Ponto-Caspian phylogenetic and ecomorphological diversity, and (2) that their biogeographical patterns are driven by anthropogenic factors acting on taxonomically distinct native regional species pools
    corecore