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22 Abstract

23 Groundwater is an extreme environment due to its absence of light, resource scarcity and 

24 highly fragmentary nature. Successful groundwater colonizers underwent major 
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25 evolutionary changes and exhibit eye and pigment loss (troglomorphies). Consequently, 

26 their chances of dispersal and survival in the well-connected surface waters are greatly 

27 decreased, resulting in significant endemism. The West Palaearctic subterranean amphipod 

28 genus Niphargus comprises hundreds of narrowly endemic and troglomorphic species. 

29 Nevertheless, a few are known to occur in surface waters, two of which, N. hrabei and N. 

30 valachicus, have extremely large ranges that even exceed those of many surface-water 

31 amphipods. We studied whether this pattern results from a secondary colonization of the 

32 relatively well-connected epigean environment, and that this ecological shift promoted the 

33 large-scale dispersal of these species. Results showed that despite their ecological and 

34 zoogeographic similarities, N. hrabei and N. valachicus are not closely related and 

35 independently colonized surface waters. Their phylogeographic patterns indicate Middle to 

36 Late Pleistocene dispersal episodes throughout the Danube lowlands, and relatively modest 

37 yet significant genetic differentiation among populations. Clustering based on morphology 

38 revealed that the two species are phenotypically closer to each other than they are to most 

39 other epigean congeners. We presume that the ecological shift to surface environments was 

40 facilitated by their ability to thrive in hypoxic waters where rheophilic competitors from 

41 the family Gammaridae cannot survive. In conclusion, our results indicate that adaptation 

42 to groundwater is not a one-way evolutionary path and that troglomorphic species can 

43 occasionally recolonize and widely disperse in surface waters.

44

45 1. Introduction

46 Groundwater macrofaunal species represent a substantial part of freshwater diversity in 

47 Europe (Zagmajster et al., 2014). Among the most remarkable features of groundwater 

48 fauna is high endemicity (Trontelj et al., 2009; Eme et al., 2017). The key mechanism 

49 underlying narrow endemism is weak dispersal, presumably reflecting the physical and 
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50 ecological properties of groundwater habitats that are fragmented and poorly connected 

51 (Strayer, 1994; Lefébure et al., 2006, 2007; Eme et al., 2013). There are only a few widely 

52 distributed groundwater taxa, usually meiofaunal species (< 1 mm), living in better 

53 connected environments such as hyporheic alluvial habitats along rivers (Ward and Palmer, 

54 1994). Furthermore, groundwater is a challenging environment due to its permanent 

55 darkness and resource scarcity (Gilbert et al., 1994; Hüppop, 2000). Consequently, 

56 groundwater species display a suite of convergent adaptations (troglomorphies) such as eye 

57 loss, depigmentation, body and appendage elongation, low metabolic rates, and resistance 

58 to hypoxia (Malard and Hervant, 1999; Hüppop, 2000). The apparent cost of their 

59 specialization is a lower ability to cope with the ecological conditions of photic 

60 environments. These are stressful for groundwater inhabitants, due to, e.g., damage from 

61 ultraviolet light because of depigmentation (Ginet, 1960; Maguire 1960; Langecker, 2000) 

62 or strong interspecific competition from well adapted and more prolific surface-water 

63 relatives (Fišer et al., 2007; Sket, 2008; Luštrik et al., 2011). Therefore, subterranean 

64 species seem to be restricted to the fragmented subsurface, their dispersal through the 

65 better connected surface waters is limited, and species ranges greater than 200 km are 

66 exceptional (Trontelj et al., 2009). Thus, these patterns from groundwater are an excellent 

67 case illustrating how evolutionary processes can shape macroecological patterns (discussed 

68 by Weber et al., 2017).

69 Niphargus is the most diverse genus of freshwater amphipods, comprising over 400 

70 species distributed in West Palaearctic groundwaters (Väinölä et al., 2008; Esmaeili-Rineh 

71 et al., 2015; Horton et al., 2017). Niphargus species are ecologically diverse, inhabiting 

72 almost all types of aquatic subterranean habitats, from deep cave lakes to small pores in the 

73 epikarst (Fišer, 2012; Fišer et al., 2006, 2014). Several species are not strictly limited to 

74 groundwater and, in addition to permanent subterranean populations they also have stable 
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75 populations in surface or ecotonal habitats (Karaman, 1977; Fišer et al., 2006, 2014; 

76 Copilaş-Ciocianu et al., 2017a). The great majority of Niphargus species are narrow-range 

77 endemics, most being known only from their type localities (Fišer et al., 2008; Eme et al., 

78 2017). Genetic evidence suggests that most of the presumably widespread taxa within 

79 Niphargus are actually complexes of endemic cryptic species (Lefébure et al., 2006, 2007; 

80 Delić et al., 2017). 

81 Two similar species from the middle and lower Danube lowlands (Southeast 

82 Europe) remarkably break this general pattern: N. hrabei Karaman, 1932 and N. valachicus 

83 Dobreanu and Manolache, 1933 (Copilaş-Ciocianu et al., 2017a). They inhabit the muddy, 

84 dimly lit and densely vegetated substrate near the shores of slow-flowing or stagnant water 

85 bodies and have rarely been reported from groundwater habitats (Mejering et al., 1995; 

86 Copilaş-Ciocianu et al., 2017a and references therein). This, coupled with the seasonal life-

87 cycle of N. valachicus (Copilaș-Ciocianu and Boroș, 2016), implies they are more tied to 

88 the surface than to the subterranean environment. The two species have the widest known 

89 geographical ranges of any niphargid (>1300 km), rivalling those of many epigean 

90 amphipods (Neseman et al., 1995; Borza et al., 2015; Copilaş-Ciocianu et al., 2017a). They 

91 exhibit a shallow genetic divergence among distant populations (Copilaş-Ciocianu et al., 

92 2017a) in comparison with other amphipods from the same region (Meleg et al., 2013; 

93 Copilaş-Ciocianu and Petrusek 2015, 2017), suggesting relatively efficient dispersal in the 

94 recent past, though details about their phylogeographic histories and dispersal mechanism 

95 are unknown. 

96 Based on previous phylogenetic studies (e.g. McInerney et al., 2014; Esmaeili-

97 Rineh et al., 2015; Delić et al., 2016), it appears that surface-water affinity in Niphargus 

98 might not be the ancestral condition, indicating that surface dwelling species could be 

99 derived from subterranean ancestors. However, this assumption has neither been postulated 
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100 nor tested. The epigean lifestyle of N. hrabei and N. valachicus coupled with their 

101 troglomorphic phenotypes further point out that they secondarily colonized surface-waters. 

102 This secondary transition to ecotonal / epigean habitats might explain the large geographic 

103 ranges of both species. Therefore, the first aim of our study was to investigate if indeed 

104 surface-water Niphargus species are derived from groundwater ancestors and if so, to infer 

105 how many surface colonization events have occurred during the evolutionary history of the 

106 genus. Second, we examined the phylogeographic consequences of surface colonization by 

107 inferring the spatio-temporal dispersal patterns of N. hrabei and N. valachicus. Finally, we 

108 tested whether the similar ecology of these species is reflected in their morphological 

109 similarity.

110

111 2. Material and methods

112 2.1. Sampling, laboratory protocols, sequence alignment and assembly of datasets 

113 Specimens were collected throughout the distribution range of both species between 2009 

114 and 2016 by sweeping a hand net through the dense riparian vegetation of various water 

115 bodies. After collection, animals were fixed in 95% ethanol. Depending on sample size, 

116 between one and six individuals per sampling locality were molecularly analysed. A total 

117 of 19 and 38 localities for N. hrabei (54 individuals) and N. valachicus (111 individuals), 

118 respectively, were investigated (Fig. 1, Table S1).

119 Genomic DNA was extracted using the Genomic DNA Mini Kit for tissue (Geneaid 

120 Biotech Ltd, Taipei). For phylogeographic purposes we used fast evolving mitochondrial 

121 and nuclear markers as they can provide phylogenetic resolution at fine spatio-temporal 

122 scales. As such, we sequenced a part of the mitochondrial gene for cytochrome c oxidase 

123 subunit I (COI) and a substantial fraction of the nuclear internal transcribed spacer (ITS1, 

124 5.8S rRNA and ITS2). These markers proved useful in a preliminary study of the genetic 
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125 variation in the two focal species (Copilaş-Ciocianu et al., 2017a). Amplification of the 

126 COI and ITS fragments followed protocols of Copilaş-Ciocianu et al. (2017a) and Flot et 

127 al. (2010a), respectively. For phylogenetic purposes we additionally sequenced two parts 

128 of the large ribosomal subunit (28S) and the histone H3 gene (H3), following the protocols 

129 in Fišer et al. (2013). These nuclear markers are more conserved and provided sufficient 

130 resolution for uncovering the niphargid phylogenetic relationships (e.g. Trontelj et al. 

131 2012, Fišer et al., 2013). Details about primers are provided in Table S3. The length of 

132 amplified fragments, and numbers of variable and parsimony informative sites are 

133 presented in Table S4.

134 The protein-coding COI and H3 sequences were aligned with MUSCLE (Edgar, 

135 2004) in MEGA 6 (Tamura et al., 2013) and checked for possible evidence of pseudogenes 

136 (i.e., presence of stop codons or reading frame shifts) by subsequent amino acid 

137 translation. The ITS and 28S fragments were aligned with MAFFT (Katoh and Standley, 

138 2013) with the Q-INS-i option (Katoh and Toh, 2008). Indels and regions of questionable 

139 homology in the 28S marker were identified and removed with GBLOCKS 0.9 (Talavera 

140 and Castresana, 2007). Double peaks in the ITS chromatograms (indicating heterozygosity 

141 or multiple gene copies) were coded according to the IUPAC ambiguity codes and 

142 haplotypes were phased with SeqPHASE (Flot, 2010) and PHASE (Stephens et al., 2001). 

143 Contigs were assembled using DNA Baser 4 (Heracle BioSoft 2013; www.DnaBaser.com).

144 For the analyses of phylogeography, we complemented the newly obtained dataset 

145 of both species (41 and 100 individuals of N. hrabei and N. valachicus, respectively) with 

146 additional COI and ITS data from previous studies (Flot et al., 2014; Copilaş-Ciocianu et 

147 al., 2017a) (see Table S1). For phylogenetic analyses, we gathered a large dataset 

148 comprising 157 ingroup taxa from 21 previous studies (see Table S2). We used the family 
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149 Pseudoniphargidae as an outgroup since it is a sister clade to niphargids (Jurado-Rivera et 

150 al., unpublished). The concatenated supermatrix contained 28% missing data.

151

152 2.2. Phylogeny, topology tests and ancestral state reconstruction

153 Phylogenetic analyses were carried out to investigate the phylogenetic position of 

154 N. hrabei and N. valachicus within the genus and to infer whether their presence in surface 

155 waters is due to a secondary colonization from subterranean habitats. Potential loss of 

156 phylogenetic signal due to substitution saturation at the COI marker was inspected using 

157 the test of Xia et al. (2003) implemented in DAMBE 5.3 (Xia and Xie, 2003). 

158 PartitionFinder 1.1.1 (Lanfear et al., 2012) was used to determine the best fitting 

159 evolutionary models and partitioning schemes by employing the greedy algorithm and the 

160 Bayesian information criterion. Models and partitions are shown in Table S4.

161 We used Bayesian inference (BI) and maximum-likelihood (ML) approaches to 

162 reconstruct phylogenetic relationships within Niphargus using the concatenated 

163 supermatrix approach in BEAST 1.8.0 (Drummond et al., 2012) and RAxML-HPC 8.2.9 

164 (Stamatakis, 2014). For the BEAST analysis we used the initial alignment from which 

165 poorly alignable regions in the 28S marker were removed (see previous section). For 

166 RAxML we used an alignment which kept these regions and was produced with SATé 

167 2.2.7 (Liu et al., 2009). Further details on analysis settings and evolutionary models are 

168 provided in Supplementary Information. 

169 To test whether the two focal taxa that show many ecological, morphological and 

170 biogeographic similarities are sister species that represent a single surface water 

171 colonization event, an alternative topology where they were constrained to monophyly was 

172 compared with the unconstrained phylogeny by applying the Shimodaira-Hasegawa (SH; 
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173 Shimodaira and Hasegawa, 1999) and the approximately unbiased tests (AU; Shimodaira, 

174 2002) implemented in the software Treefinder (Jobb, 2011).

175 We evaluated if, and how many times, groundwater Niphargus species secondarily 

176 colonized the epigean / shallow subterranean habitat by mapping species habitat onto a 

177 phylogenetic tree. The habitat preferences were inferred from available publications and 

178 unpublished field data; we treated them as a binary character, simplified to “subterranean” 

179 and “surface”. The state “subterranean” refers to an exclusively stygobiotic lifestyle, while 

180 “surface” encompasses a broad array of habitats at the boundary between the surface and 

181 subterranean environments, including roots of submerged plants, forest ditches, Sphagnum 

182 moss, springs, and shallow subterranean habitats (hypotelminorheic). Ancestral states were 

183 inferred with likelihood and Bayesian methods using 1000 post burn-in trees from the 

184 BEAST analysis to account for phylogenetic uncertainty. Likelihood mapping using 

185 Markov k-state 1 parameter model was performed in Mesquite 3.04 (Maddison and 

186 Maddison, 2015). The character state at the root was estimated from the model (Mesquite 

187 default setting) and not constrained as in the original method of likelihood reconstruction 

188 (Schluter et al., 1997). Bayesian mapping was performed using Bayes Traits v. 3 (Meade 

189 and Pagel, 2016). Priors for evolutionary rates from “surface” to “subterranean” and from 

190 “subterranean” to “surface” were drawn from a uniform distribution between 0 and 100. 

191 The selection of the optimal model of the evolutionary rates was made by comparison of 

192 Bayes factors (function stepping stone). The best performing models allowed for traits to 

193 vary their rate of evolution within and between branches (function covarion, adds one 

194 additional parameter to the model) (Table S5). Among these models, there was no 

195 significant difference in marginal likelihoods if the transition rates from “surface” to 

196 “subterranean” and vice versa are identical or not. For this reason, we selected a simpler 

197 model (function restrict, one parameter less, i.e., forward evolutionary rate is equal to 
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198 backward rate); the final model had two parameters (a single evolutionary rate modified by 

199 covarion). We ran 1 010 000 iterations, which were sampled every 1000th generation with 

200 burn-in of 10 000. The analyses were repeated four times to check for the consistency of 

201 the results. Acceptance rate between 20-40% was achieved by an automatic tuning method 

202 implemented in Bayes Traits v.3 as a default.

203

204 2.3. Phylogeographic analyses

205 The number of haplotypes (H), segregating sites (S), haplotype (Hd) and nucleotide 

206 diversity (π) and mean number of pairwise nucleotide differences (K) were calculated for 

207 N. hrabei and N. valachicus and their intraspecific clades (see Results) with DnaSP 5.1 

208 (Librado and Rozas, 2009) using both the COI and ITS markers.

209 In order to explore intraspecific patterns of genetic diversity, we constructed 

210 haplotype networks and time-calibrated phylogenetic trees. The models and partitions were 

211 estimated with PartitionFinder 1.1.1 and are shown in Table S4. Haplotype networks were 

212 constructed for both COI and phased ITS sequences with Haploviewer (Salzurger et al., 

213 2011); maximum likelihood trees inferred with MEGA 6 with the models presented in 

214 Table S4 were used as input. Unique haplotypes were selected with the online tool FaBox 

215 (Villesen, 2007; http://www.birc.au.dk/software/fabox) and were used to build time-

216 calibrated COI gene trees for both species using BEAST 1.8.0. The best fitting coalescent 

217 (constant size, logistic, expansion and exponential growth) and clock models (strict and 

218 relaxed) were selected using the modified Akaike information criterion (AICM) with 

219 moment’s estimator (Baele et al., 2012) in TRACER 1.6 (Drummond and Rambaut, 2007) 

220 with 1000 bootstrap replicates. The best clock and coalescent models are shown in Table 

221 S6. The MCMC chain was run for 20 million generations and sampled every 1000 
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222 generations. Effective sample size of parameters was checked using TRACER 1.6; values 

223 of at least 200 were considered appropriate. The first 20% of trees were discarded as burn-

224 in and the maximum clade credibility tree was built using TreeAnnotator 1.8.0 (Drummond 

225 and Rambaut, 2007). 

226 The main goal of the dating analysis was to provide an approximate estimation of 

227 the time frame of dispersal (i.e. Pleistocene vs. Pliocene or Miocene) and not to pinpoint 

228 specific historical factors responsible for the dispersal events. Because the rates of 

229 molecular evolution seem to be time-dependent, intraspecific rates can evolve faster than 

230 interspecific ones (Ho et al., 2005, 2011; but see Emerson and Hickerson, 2015). This 

231 phenomenon has been observed in malacostracans as well, where the intraspecific clock 

232 rates vary from 6.58% Ma-1 (mantis shrimp Haptosquilla oulchella, Crandall et al., 2012) 

233 to very fast post-glacial rates of up to 27% Ma-1 (mysid Mysis salemaai, Audzijonyte and 

234 Väinölä, 2006). However, because we do not have any strong a priori assumption of fast 

235 post-glacial rates, we prefer the 6.58% Ma-1 rate as it is intermediary between the 

236 interspecific rate of 2.3% Ma-1, commonly used in dating amphipod divergence (e.g. 

237 Lefébure et al., 2006; Copilaş-Ciocianu and Petrusek 2015), and the other extreme of very 

238 fast intraspecific post-glacial rate of 27% Ma-1. Furthermore, the magnitude of divergence 

239 and the time scale of our study are also intermediary (see Results). 

240 The following landscape genetic analyses were performed on the COI marker 

241 because it had a greater variability than ITS and sufficient sample size. To test for a pattern 

242 of isolation by distance (IBD), we performed a Mantel test in the software Alleles In Space 

243 (Miller 2005) using pairwise p-distance values as a measure of genetic distance and 1000 

244 replicates. The genetic population structure was examined using an analysis of molecular 

245 variance (AMOVA; Excoffier et al., 1992) in ARLEQUIN 3.5 (Excoffier and Lischer, 

246 2010) by grouping the sampling sites according to the main river drainages. Tests were 
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247 performed with Tamura-Nei distances and significance was assessed using 10 000 

248 permutations. Population differentiation among drainages was investigated using pairwise 

249 fixation indices (ΦST; Weir and Cockerham, 1984) computed with the Tamura-Nei model 

250 in ARLEQUIN. Significance levels were assessed using 10 000 permutations. Correction 

251 for multiple testing was performed with the Benjamini-Hochberg procedure (Benjamini 

252 and Hochberg, 1995) in the software SGoF+ (Carvajal-Rodriguez and de Uña-Alvarez, 

253 2011). In the case of N. hrabei, four individuals were removed from the AMOVA and ΦST 

254 analyses as they were the only representatives of their respective drainages.

255 The historical demographic patterns of both species were explored using three 

256 approaches based on the COI data. First, to examine if a demographic expansion took place 

257 recently, we employed three neutrality tests: Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 

258 1997), implemented in ARLEQUIN, and R2 (Ramos-Onsins and Rozas, 2002) in DnaSP 

259 5.1. Their statistical significance was evaluated using 10 000 simulated samples. As a 

260 second test for demographic expansion, we calculated mismatch distributions (Rogers and 

261 Harpending, 1992) under a sudden-expansion model in ARLEQUIN with 1000 bootstrap 

262 replicates. The validity of this model was assessed using the sum of squared deviations 

263 (SSD) and Harpending’s raggedness statistic (Hri; Harpending, 1994). Third, Bayesian 

264 skyline plot analyses (BSP; Drummond et al., 2005) were employed in BEAST 1.8.0 in 

265 order to visualize demographic changes through time. The same clock rate and 

266 evolutionary models were used as for the time calibrated phylogenetic analyses (see 

267 above). The MCMC chain was run for 50 million generations, sampled every 1000 

268 generations and the first 10% of trees were discarded as burn-in. The analyses were 

269 repeated three times in order to ensure convergence on the same result. Effective sample 

270 sizes were checked with TRACER 1.6.
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271 To explore the origin and dispersal history of each species while accounting for 

272 phylogenetic uncertainty, we used continuous Bayesian phylogeographic diffusion models 

273 (Lemey et al., 2010) implemented in BEAST 1.8.0. The analysis was based on the COI 

274 marker and we used the same settings as for the time-calibrated phylogenetic analyses. 

275 Best fitting diffusion models are presented in Table S7 and further details are provided in 

276 the Supplementary Information. 

277

278 2.4. Detection of cryptic lineages

279 Considering the wide and fragmented range of the studied species, we used the COI 

280 and ITS markers to investigate if they are composed of independently evolving cryptic 

281 lineages. For the COI dataset (encompassing all individuals of both species) we used a 

282 Bayesian implementation of the Poisson tree process on the bPTP server (http://species.h-

283 its.org/ptp) (Zhang et al., 2013). The input phylogenetic tree was generated with PhyML 

284 3.0 (Guindon et al., 2010) using the evolutionary models in Table S4. We ran the analysis 

285 for 300 000 MCMC iterations with a thinning of 100 and 20% burn-in. Due to the fact that 

286 putative heterozygous individuals were present in the ITS dataset (see Results), potential 

287 cryptic lineages were investigated using Doyle’s concept of species as fields for 

288 recombination (FFRs; Doyle 1995), i.e. assuming that species are characterized by mutual 

289 allelic exclusivity. For this purpose, we transformed the haplotype network of phased ITS 

290 sequences (obtained as indicated above) into a haploweb by connecting the haplotypes 

291 which were co-occurring in heterozygous individuals (Flot et al., 2010b). Interconnection 

292 among all haplotypes indicates a common gene pool, and therefore conspecificity under 

293 the FFR concept, while groups of haplotypes which are not interconnected might indicate 

294 cryptic species or cessation of gene-flow among geographically isolated populations.

295
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296 2.5. Morphological analyses

297 In order to test the hypothesis that similar ecology leads to morphological similarity of the 

298 two focal species, we analyzed a dataset of 81 Niphargus species, of which 15 live in 

299 similar habitats as the two focal ones (Tables S2, S8). We measured between 1 and 10 

300 individuals per species. For the analyses we used only adult males; females were 

301 considered only in those species that show no sexual dimorphism and only when males 

302 were not available. We analyzed 35 traits describing in detail the body shape and size, 

303 appendage length, and spine patterns (Fišer et al., 2009) (Table S8). We calculated mean 

304 values for the traits for the species and prior to the analysis transformed the data as 

305 follows: 1) the number of spines and the body lengths were log-transformed, and 2) in 

306 order to remove the impact of body size, all length-measures were regressed onto body 

307 lengths, and standardized residuals were calculated. We inferred morphological similarity 

308 from cluster analyses using squared Euclidean distances and Ward’s agglomeration 

309 method. All analyses were run using SPSS ver. 20 (IBM Corp 2011).

310

311 3. Results

312 3.1. Phylogeny, topology tests and ancestral state reconstruction

313 The substitution saturation test indicated no significant saturation at the COI marker 

314 (p<0.0001). Both ML and BI analyses on the concatenated dataset revealed similar results. 

315 The removal or retention of poorly alignable regions in the 28S marker did not influence 

316 the overall phylogenetic pattern (Fig. S1). The topology of the phylogeny is largely 

317 congruent with the recent phylogenetic reconstructions of the genus by recovering the 

318 same major clades (e.g. McInerney et al., 2014; Esmaeili-Rineh et al., 2015; Delić et al., 

319 2016). All the species inhabiting surface-water habitats, including N. hrabei and N. 

320 valachicus, were recovered in the same major clade; however, the two focal species are not 
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321 in a sister relationship (Figs 1, S1). The position of N. valachicus is recovered at the base 

322 of a clade that mostly contains surface-water species, though the support for the clade is 

323 not high in the ML analysis. In contrast, N. hrabei is clustered together with strong support 

324 with two subterranean species, N. plateaui and N. puteanus (Figs 1, S1). The sister relation 

325 of both species (monophyly) was rejected by both the SH and AU tests at p = 0.036 and p 

326 = 0.023, respectively (likelihood unconstrained = -60408.49, AICc = 121554; likelihood 

327 constrained = -60430.26, AICc = 121598).

328 All ancestral state reconstruction methods support the hypothesis that the ancestor 

329 of Niphargidae and Pseudoniphargidae was a subterranean species (Fig. 1, Table S9). Both 

330 families apparently diversified in the subterranean environment. Both likelihood and 

331 Bayesian mapping indicate that the probability of ancestors having lived in a subterranean 

332 environment is above 0.95 across all basal splits. Bayesian mapping suggests that the 

333 surface and/or shallow subterranean environments were colonized at least four times 

334 independently (Fig. 1; nodes 7, 9, 11 and 13), when the probability for a subterranean 

335 ancestor abruptly fell below 0.58. However, the likelihood analysis was less conservative 

336 and indicated that ecological change took place along terminal branches, i.e. there might 

337 have been even more transitions to surface / shallow subterranean environments (Table 

338 S9). In the case of N. hrabei, the transition occurred along the terminal branch of the tree, 

339 while in the case of N. valachicus, the transition probably took place in the common 

340 ancestor of clade 11. In any case, these results coupled with the topology of the tree 

341 indicate that both focal species colonized surface habitats independently from each other.

342

343 3.2. Phylogeography

344 The COI marker was represented by 12 and 42 haplotypes in N. hrabei and N. valachicus, 

345 respectively, and the ITS marker by 6 and 23 haplotypes (Table 1). Eight out of the 22 
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346 analysed individuals (36%) were heterozygous at the ITS locus in N. hrabei, and 26 out of 

347 40 individuals (65%) were heterozygous in N. valachicus (Table 1). The geographical 

348 distribution of haplotypes is shown in Fig. 2. Haplotype and nucleotide diversity, and mean 

349 number of pairwise nucleotide differences were higher in N. valachicus than in N. hrabei at 

350 both markers (Table 1).

351 The haplotype networks based on COI indicate that both species have a 

352 geographically structured genetic variation, most haplotypes apparently being endemic in 

353 relatively narrow parts of the species’ ranges (Fig 2A, B). This pattern was less 

354 pronounced at the ITS marker where a single haplotype was widespread across the entire 

355 range in each of the species (nH1 in H. hrabei and nV1 in N. valachicus). However, groups 

356 of locally restricted haplotypes could also be observed (Fig. 2C, D). The intraspecific COI 

357 time-calibrated trees (assuming the COI rate of 6.58 Ma-1) indicate that N. hrabei has a 

358 shorter mean coalescence time (103 ka, 95% HPD: 56–152 ka) than N. valachicus (353 ka, 

359 95% HPD: 214–504 ka) (Fig. 3A). No strongly supported intraspecific lineages could be 

360 observed in N. hrabei; however, N. valachicus was composed of two distinct clades: clade 

361 A distributed in the Pannonian lowlands and clade B distributed in the SE parts of the 

362 Pannonian lowlands (where it partly overlaps with clade A), Wallachian Plain, Danube 

363 Delta and northern Turkey (Fig 1B).

364 The IBD test revealed a highly significant relationship between geographic and 

365 genetic distances in both species (N. hrabei, r2=0.43; N. valachicus r2=0.37; p<0.0001 in 

366 both species), indicating that dispersal is limited (Fig. S2). The AMOVA analysis indicated 

367 that most of the observed variation is explained by differences among drainages (N. hrabei: 

368 80.05%, ΦCT = 0.80, p=0.007; N. valachicus: 58.5%, ΦCT = 0.58, p<0.0001) (Table 2). 

369 Drainages are listed in Tables S10 and S11. Pairwise ΦST distances indicated a significant 

370 genetic differentiation at COI among most of the main drainages, with 90% and 82% of all 
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371 pairwise comparisons being statistically significant in N. hrabei and N. valachicus, 

372 respectively (Tables S10 and S11). 

373 The three demographic tests (Tajima’s D, Fu’s Fs and R2) were applied to each 

374 species and to each of the two clades of N. valachicus. In the case of N. hrabei, only Fu’s 

375 Fs was statistically negatively significant (p = 0.031), however, the other two tests were 

376 close to the significance threshold (Tajima’s D p = 0.056; R2 p=0.083), indicating recent 

377 population expansion (Table 1). In N. valachicus overall and in its clade A none of the tests 

378 were significant, suggesting a stable populations size, but population expansion was 

379 indicated in clade B as Fu’s Fs was significantly negative (p<0.0001), while the other two 

380 tests were close to statistical significance (Tajima’s D p = 0.061; R2 p = 0.06) (Table 1). 

381 The mismatch distribution of haplotype pairwise differences was unimodal in N. hrabei 

382 and the SSD and Hri tests indicate no significant departure from the assumption of rapid 

383 population expansion (Fig. 3B, Table 1). In the case of N. valachicus, the overall mismatch 

384 distribution was bimodal with the SSD and Hri having no statistically significant values 

385 (Fig. 3B, Table 1). Clade A had a multimodal mismatch distribution while clade B was 

386 unimodal (Fig. 3B). The SSD and Hri tests were not significant in the former, but the Hri 

387 was significant in the latter (Table 1). 

388 Taken together the evidence points to a relatively recent and rapid population 

389 expansion in N. hrabei and N. valachicus clade B and a stable population size in clade A. 

390 The BSP indicates a population growth in N. hrabei during the last 50 ka with an increase 

391 in the last 10-15 ka (Fig. 3B). In N. valachicus a population growth took place ca. 100 ka, 

392 followed by a decline during the Last Glacial Maximum (ca. 25 ka) and another growth 

393 during the last 5-10 ka (Fig. 3B).

394 The different Bayesian phylogeographic diffusion models produced congruent 

395 results regarding the presumed past dispersal patterns. The analyses suggest the origin of 
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396 N. hrabei’s dispersal is in the lower Danube lowlands, ca. 90 ka (Wallachian Plain, S 

397 Romania). From there, it has subsequently spread to the west and east multiple times along 

398 the Danube River and only recently, likely postglacially, arrived to the upper parts of the 

399 river basin (Fig. 4A). In contrast, the dispersal of N. valachicus apparently started earlier, 

400 in the southwest of the Pannonian lowlands in northern Croatia, ca. 350 ka. It spread to the 

401 east, along the Sava and Drava rivers, reaching the Danube and the Wallachian Plain 

402 somewhere between 100 and 200 ka. It reached northern Turkey and the north of the 

403 Pannonian Plain only in the last 100 ka, possibly postglacially (Fig. 4B). Although we 

404 acknowledge a substantial uncertainty of the absolute values, the results based on a 

405 conservative mutation rate strongly suggest that dispersal of these species is relatively 

406 recent (the second half of the Pleistocene) and that N. valachicus has occupied the Danube 

407 lowlands before N. hrabei. 

408

409 3.3. Absence of cryptic lineages

410 Despite the fact that both species have wide and fragmented ranges, the COI and ITS data 

411 do not indicate the existence of reproductively separated lineages. The bPTP analysis 

412 based on COI supports the conspecificity of all analysed populations in both species 

413 (posterior probability of 0.5 and 0.8 in N. hrabei and N. valachicus, respectively) (Fig. 

414 S3A). Furthermore, the haploweb analysis based on ITS indicates that many of the 

415 analysed individuals share the same haplotype (nH1 in H. hrabei and nV1 in N. 

416 valachicus) and all haplotypes co-occurring in heterozygous individuals are interconnected 

417 (Fig. S3B), indicating a common gene pool.

418

419 3.4. Morphological analyses
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420 The morphological analysis split all 81 analyzed species into two major clusters (Fig. 5). 

421 One cluster comprises species living in the stagnant water of permanently flooded parts of 

422 karstic massifs while the second includes species found in flowing water, interstitial and 

423 surface habitats. The first cluster is further split into three subclusters corresponding to 

424 lake, lake giant and daddy-longlegs ecomorphs (Trontelj et al., 2012). The second cluster 

425 has a more complex structure and its two principal subclades are split even further. Species 

426 occurring in surface habitats were clustered into four separate groups. N. hrabei and N. 

427 valachicus along with N. elegans from northern Italy were clustered together with small 

428 bodied, interstitial and epikarst taxa (small pore ecomorph sensu Trontelj et al., 2012). 

429 Apparently, they are not very similar to the other species occurring in surface habitats that 

430 were rather clustered together with cave stream species (cave stream ecomorph sensu 

431 Trontelj et al., 2012) (Fig. 5). 

432

433 4. Discussion

434 Our results indicate that, despite their ecological and morphological similarities, N. hrabei 

435 and N. valachicus are not closely related. Their phylogenetic position and reconstructed 

436 ancestral states imply independent colonization of surface waters from subterranean 

437 ancestors. Their phylogeographies reveal large-scale dispersal across the Danube lowlands 

438 throughout the Pleistocene, and their morphologies are more similar to each other than to 

439 most other congeners known to occur in surface-water habitats. These results indicate that 

440 the habitat shift from ground- to surface waters enabled the dispersal and range expansion 

441 of these species. Below we discuss the possible factors that have facilitated this ecological 

442 shift and examine the biogeographical histories of these two species.

443

444 4.1. Reversal to surface waters
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445 It appears that the ecological barrier between subsurface and surface is weaker than 

446 previously thought for troglomorphic species. Reversal to surface habitats from 

447 subterranean ancestors has been proposed so far in typhlochactid scorpions (Prendini et al., 

448 2010) and in phalangopsid crickets (Desutter-Grandcolas, 1997), but both studies relied on 

449 morphology only, and did not test this phenomenon on molecular phylogenies. To our 

450 knowledge, our study is the first to use a molecular phylogeny to test whether 

451 troglomorphic subterranean species can recolonize surface habitats. In the case of 

452 Niphargus, all of the surface-water species belong to a large, morphologically and 

453 ecologically diverse clade.

454 Although most of the surface-water Niphargus species have known populations 

455 both in subterranean and surface / ecotonal habitats (Fišer C. et al., 2006; 2010b; 2014; 

456 Fišer Ž. et al., 2015), N. hrabei and N. valachicus are probably the most detached from the 

457 subterranean environment as they have much larger ranges and a far greater number of 

458 documented occurrences in surface versus groundwater (Copilaş-Ciocianu et al., 2017a). 

459 Therefore, it appears that there were at least two independent colonization events of truly 

460 surface-waters and multiple shifts to ecotonal habitats from subterranean ancestors during 

461 the evolutionary history of Niphargus. 

462 According to the molecular dating analysis of McInerney et al. (2014), the clade 

463 that contains the surface-water species has radiated during the Late Eocene. This is in 

464 accordance with the amber fossil evidence which indicates that some species of Niphargus 

465 were already living in surface freshwaters during this time period (Coleman and Myers, 

466 2000; Jażdżewski and Kupryjanowicz, 2010). Thus, the evidence indicates that there were 

467 recurrent colonization events of surface waters during the evolutionary history of the 

468 genus. Moreover, we cannot rule out a scenario that the ancestors of some clades for a 
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469 certain period lived and dispersed in ecotonal habitats, leading to a secondary colonization 

470 of subterranean waters.

471 The occurrence of a high number of troglomorphic groundwater species has been 

472 long documented at the surface/subsurface boundary (shallow subterranean habitats; 

473 Culver and Pipan, 2014). It is generally thought that they are ancestral forms which 

474 represent the initial stages of colonization of the deeper subterranean realm (Culver and 

475 Pipan, 2009, 2014). However, our results add to the growing body of evidence which 

476 indicates that the opposite is also possible. Nevertheless, the factors that promoted the 

477 ecological shift to shallow subterranean and eventually surface habitats are unknown. The 

478 persistence of troglomorphic species in ecotonal habitats is probably determined by the 

479 greater availability of nutritional resources (assumed by Sket, 2008; Culver and Pipan, 

480 2009, 2014; Fišer et al., 2010a), but their presence in epigean habitats can be realized in 

481 rare circumstances in which competitors are absent or scarce (Humphreys, 2000; Prendini 

482 et al., 2010). Indeed, the distribution of troglomorphic species in surface environments 

483 seems to be limited by competition, predation and risk of ultraviolet radiation exposure due 

484 to irreversible adaptations such as lack of eyes and pigment (reviewed in Fišer C. et al., 

485 2014; Fišer Ž. et al., 2016). 

486 N. hrabei and N. valachicus are bound to the muddy, dimly lit and densely 

487 vegetated bottom of stagnant or slow flowing lowland waters (Copilaş-Ciocianu et al., 

488 2017a and references therein). These habitats are characterized by eutrophic conditions, 

489 high temperature and frequent hypoxia (Junk et al., 1989; Parr and Mason 2004; Graeber et 

490 al., 2013) and are avoided by the presumably ecologically closest competitors, the 

491 oxyphilic and mostly rheophilous gammarid amphipods (Mejering, 1991; Mejering et al., 

492 1995; Henry and Danielopol, 1999; Copilaş-Ciocianu et al., 2014; Copilaş-Ciocianu and 

493 Boroş, 2016; Borza et al., 2017; Mauchart et al., 2017). Experimental evidence has shown 
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494 that niphargids can tolerate hypoxia and other adverse environmental conditions much 

495 better than surface-water gammarids (Danielopol et al., 1994; Hervant et al., 1995; Malard 

496 and Hervant, 1999; Coppellotti Krupa and Guidolin, 2003; Simčič et al., 2005, 2006; Flot 

497 et al., 2014). Therefore, it seems that N. hrabei and N. valachicus might have a competitive 

498 edge over gammarids in these habitats; however, experimental proof is needed in this 

499 particular case.

500 Furthermore, it appears that gammarids of the genus Gammarus survived 

501 Pleistocene glaciation episodes in montane refugia from where only a few species 

502 regionally dispersed to lower elevations (Copilaş-Ciocianu and Petrusek 2015, 2017; 

503 Copilaş-Ciocianu et al., 2017b). G. roeselii and some invasive Ponto-Caspian species, 

504 which are common in the Danube lowlands, have dispersed only postglacially or even in 

505 historical times from the Balkans or the Black Sea (Barnard and Barnard, 1983; de Vaate et 

506 al., 2002; Cristescu et al., 2004; Rewicz et al., 2015). We therefore hypothesise that the 

507 colonization of surface waters was possible because of the general and historical scarcity 

508 or even absence of gammarid competitors in the habitats in which N. hrabei and N. 

509 valachicus thrive. 

510

511 4.2. Morphological evolution

512 The similarity of species living at the boundary between the surface and subterranean 

513 ecosystems was noted earlier and some authors even considered them as members of own 

514 subgenus or species group (Karaman 1950; Sket 1958, Straškraba 1972a). Our results 

515 imply that this similarity is of convergent origin due to multiple independent colonization 

516 events of the epigean / ecotonal environment. However, this ecological shift does not 

517 always lead to the same phenotype: secondary colonizers of the surface-subterranean 

518 boundary are grouped into two morphological clusters. Interestingly, the two focal species 
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519 cluster together with N. elegans, another nearly entirely surface-water species with a large 

520 range, widespread across the northern Italian lowlands (Karaman 1977). The astonishing 

521 similarities in their morphology, ecology, and range-size deserve further attention. A key 

522 question arising from this pattern is whether the large range size is a result of an enhanced 

523 possibility of passive dispersal connected with transition to better-connected habitats (see 

524 below), or whether some morphological traits may be (indirectly) linked with dispersal 

525 capacity. Thus, the functional links between morphological similarities, ecological 

526 conditions and dispersal ability remain yet to be explored.

527

528 4.3. Phylogeography and dispersal

529 According to our phylogeny, N. hrabei is a sister species to N. plateaui, a taxon known 

530 from western France. Such a vast distance (ca. 1500 km) between these species might 

531 indicate a long-range dispersal in the past, or that additional related lineages remain 

532 undiscovered or went extinct. On the other hand, N. valachicus belongs to a clade of 

533 northern Dinaric species which are known to occur in surface-water habitats. This agrees 

534 with its SW Pannonian dispersal origin, which is in geographical proximity to its relatives.

535 If we consider the scenario of relatively conservative mutation rates, coalescence 

536 times for both species correspond with periods of warm interglacial stages. Haplotypes of 

537 N. hrabei coalesce ca. 100 ka (Eemian), roughly corresponding with the Marine Isotopic 

538 Stage 5d (ca. 109 ka), while coalescence time for N. valachicus is ca. 350 ka, 

539 corresponding with the Marine Isotopic Stage 9 (ca. 337 ka) (Lisiecki and Raymo, 2005), 

540 suggesting that their dispersal may have started during these warmer periods. In the case of 

541 N. hrabei, its initial Eemian expansion would coincide with the expansion of Fagus 

542 sylvatica in Central and Southern Europe (Magri et al., 2006). The presence of N. 

543 valachicus in isolated streams along the Black Sea coast is likely explained by the lower 
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544 water levels and freshwater conditions during the Last Glacial Maximum (Ryan et al., 

545 1997; Bahr et al., 2006; Georgievski and Stanev, 2006). Our data reveal that N. valachicus 

546 has reached northern Turkey very recently, possibly during the Holocene, but definitely 

547 before the last connection with the saline Mediterranean ca. 7-9 ka (Federov, 1971; Ryan et 

548 al., 1997; Badertscher et al., 2011). During this time the shelf of the Black Sea was 

549 exposed, forming vast deltaic systems that probably facilitated coastal dispersal (Federov, 

550 1971; Ryan et al., 1997). The presence of this species along the Caspian Sea shores in Iran 

551 (Karaman, 1998) might be explained by the frequent Pleistocene connections with the 

552 Black Sea which have facilitated biotic interchange (Leonov et al., 2002; Grigorovich et 

553 al., 2003; Badertscher et al., 2011). However, it is not yet known if the Iranian populations 

554 are indeed conspecific with N. valachicus. 

555 Although we urge caution in interpreting absolute dates, these results confidently 

556 refute previous hypotheses according to which N. hrabei and N. valachicus invaded 

557 freshwater from the brackish Paratethys Sea during the Late Miocene (Straškraba 1972b; 

558 Sket 1981) and are in accordance with the preliminary data presented in our previous study 

559 (Copilaş-Ciocianu et al., 2017a). A faster mutation rate would, of course, indicate an even 

560 more recent expansion, and even two to three times slower rate would not push 

561 coalescence times further back than the Pleistocene. The Pannonian clade of N. valachicus 

562 (clade A) seems to have had a stable demographic history throughout the Late Pleistocene 

563 as opposed to clade B and N. hrabei which exhibit substantial recent demographic growth. 

564 The stable demography of clade A is in agreement with the emerging view that the 

565 Pannonian Basin functioned as a glacial refugium for a wide array of taxa, ranging from 

566 aquatic invertebrates and vertebrates to terrestrial plants and mammals (Neumann et al., 

567 2005; Verovnik et al., 2005; Fussi et al., 2010; Antal et al., 2016; Vörös et al., 2016 ).
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568 The significant correlation between genetic and geographic distances and genetic 

569 differentiation among drainages indicates that despite the wide ranges of the focal 

570 Niphargus species, their dispersal is limited. This apparent contradiction might be 

571 explained by the fact that their dispersal is passive and happened throughout relatively long 

572 periods of time (ca. 100 ka in N. hrabei and 350 ka in N. valachicus), although in some 

573 parts of their ranges they have very likely experienced postglacial demographic expansion. 

574 This indicates that chances for dispersal are not equal in time and the highest probability 

575 for spreading could be restricted to favourable climatic periods or linked to rare long-

576 distance dispersal events. Given that freshwater amphipods are usually poor and passive 

577 dispersers, their dispersal among different water bodies could be achieved either by animal 

578 vectors – especially waterfowl and aquatic mammals (Peck, 1975; Swanson, 1984; 

579 Rachalewski et al., 2013) – or during flooding episodes (e.g. Van Leeuwen et al., 2013). In 

580 any case, the large expanses of flat and homogeneous relief with interconnected water 

581 bodies of the Danube floodplains seem to have facilitated the range expansion of these 

582 species. The same pattern might be true for N. elegans, a species which is widespread 

583 throughout the floodplains of the Po River in northern Italy (Karaman, 1977) and also 

584 exhibits low intraspecific genetic divergence (Fabio Stoch, pers. comm.). 

585 Considering that groundwater habitats are poorly connected in comparison to 

586 surface ones, the occurrence of at least two independent large-scale dispersal events of 

587 troglomorphic species in surface waters indicates that habitat connectivity might play a 

588 greater role in limiting dispersal than species’ ecology or biology. 

589

590 5. Conclusion

591 Our results strongly indicate that more than one invasion of surface waters and even 

592 more shifts to the surface/subsurface boundary from subterranean ancestors have occurred 
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593 during the evolutionary history of Niphargus. Furthermore, we show for the first time that 

594 troglomorphic species are capable of relatively rapid and large-scale dispersal in surface 

595 waters. This indicates that adaptation to groundwater might not be a one-way evolutionary 

596 path and subterranean troglomorphic species can occasionally recolonize and widely 

597 disperse in surface waters.

598
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1042

1043

1044 Table 1. Genetic polymorphism (COI and ITS) and historical demographic results (COI) 

1045 for the studied species and clades. For the neutrality tests, p-values are provided in 

1046 parentheses and significant values are shown in bold.

Species/clade N S H Hd (SD) π (SD) K D (p) Fs (p) R2 (p) τ θ0 θ1 SSD (p) Hri (p)
COI
N. hrabei 54 15 12 0.768 

(0.046)
0.0028 

(0.0004)
1.76 -1.376 

(0.056)
-4.160 
(0.031)

0.108 
(0.083)

0.68     1.23     3451.34 0.003 
(0.522)

0.034 
(0.275)

N. valachicus 
overall

111 42 42 0.962 
(0.007)

0.0157 
(0.0004)

7.13 -0.413 
(0.406)

-5.742 
(0.117)

0.092 
(0.402)

12.26 0.00 16.48  0.009 
(0.470)

0.008 
(0.719)

N. valachicus A 49 19 14 0.877 
(0.030)

0.0079 
(0.0006)

3.56 -0.724 
(0.252)

3.044 
(0.880)

0.107 
(0.385)

3.21 1.54 8.32    0.004 
(0.766)

0.015 
(0.867)

N. valachicus B 62 36 28 0.956 
(0.011)

0.0071 
(0.0006)

4.42 -1.385 
(0.061)

-14.238 
(0.000)

0.102 
(0.06)

3.00 1.90 3414.97 0.006 
(0.078)

0.020 
(0.028)

ITS
N. hrabei 30 

(22)*
7 6 0.736 

(0.056)
0.00047 

(0.00008)
1.26

N. valachicus 66 
(40)*

28 23 0.73 
(0.060)

0.00339 
(0.00045)

4.96

1047  N – sample size (no. of sequences); S – number of variable sites; H – number of haplotypes; Hd – haplotype 

1048 diversity; π – nucleotide diversity; K – mean number of pairwise nucleotide differences; D – Tajima’s D 

1049 statistics; Fs – Fu’s Fs  statistics; R2 – Ramos-Onsins and Rozas’s R2 statistics; τ – coalescence time in 

1050 mutational units; θ0, θ1 – effective population size at the start and the end of the expansion; SSD – sum of 

1051 squared deviations; Hri – Harpending’s raggedness index;* – parentheses refer to no. of analysed individuals

1052
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1053 Table 2. Analysis of molecular variance (AMOVA) in the studied species based on COI 

1054 with populations grouped according to the major river drainages (listed in Tables S10 and 

1055 S11). Significant p-values are shown in bold for the fixation indices (Φ-statistics).

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Species Source of 
variation

d.f. Sum of 
squares

Percentage 
of variation

Φ-statistics P

N. hrabei
Among 
drainages

4 31.28 80.05 Φct = 0.80 0.007

Among 
populations 
within 
drainages

10 4.03 11.19 Φsc = 0.56 0.002

Within 
populations

35 3.4 8.75 Φst = 0.91 <0.0001

N. valachicus
Among 
drainages

12 381.68      58.5 Φct = 0.58 <0.0001

Among 
populations 
within 
drainages

25 131.3        33.1 Φsc = 0.79 <0.0001

Within 
populations

73 32.75 8.4 Φst = 0.91 <0.0001
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1080 Figure captions

1081

1082 Fig. 1 Bayesian phylogeny of Niphargus and ancestral state reconstruction of the species’ 

1083 habitat. Species that occur in surface habitats are highlighted with red, dashed branches. 

1084 The widely-dispersed focal species, N. hrabei and N. valachicus are indicated with larger 

1085 font size. Circles at nodes denote posterior probability for clade support (black ≥ 0.95, grey 

1086 = 0.90-0.94 and white = 0.70-0.89). The pie charts along the numbered nodes of the tree 

1087 indicate the probability of subterranean (grey) and surface (red) ecology of the ancestors. 

1088 The numbers at nodes correspond with those in Table S9. Inset image depicts a male N. 

1089 valachicus (Photograph: Denis Copilaş-Ciocianu).

1090

1091 Fig. 2 Geographical distribution and haplotype networks of COI and ITS in N. hrabei (A, 

1092 C) and N. valachicus (B, D). Colours indicate middle (red) and lower (yellow) Danube and 

1093 Black Sea (green) populations. Distribution of clades A and B of N. valachicus are 

1094 indicated by dotted and dashed lines, respectively. The size of the circles in the haplotype 

1095 networks is proportional to the observed frequency of the corresponding haplotype. Each 

1096 segment indicates one substitution. Relevant countries are indicated by corresponding 2-

1097 letter ISO codes: AT—Austria, HU—Hungary, HR—Croatia, RO—Romania, RS—Serbia 

1098 and TR—Turkey.

1099

1100 Fig. 3 Coalescence and demography of N. hrabei (upper panel) and N. valachicus (lower 

1101 panel). A) Time-calibrated COI trees. Posterior probability at nodes is indicated by circles 

1102 (black ≥ 0.95, dark grey = 0.85–0.94, light grey = 0.70–0.84, and white = 0.50–0.69). Blue 

1103 bars at nodes denote the 95% HPD intervals of clade age. B) Bayesian skyline plots (BSP) 

1104 and mismatch distribution histograms. Mean populations size through time is shown by 
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1105 thick black lines and 95% confidence intervals with grey in the BSP. Mismatch 

1106 distributions were also calculated separately for each of the two clades (A and B) of N. 

1107 valachicus. Continuous lines indicate the observed frequency of pairwise differences and 

1108 dotted lines indicate the expected frequency under a model of sudden demographic 

1109 expansion.

1110

1111 Fig. 4 Dispersal of N. hrabei (A) and N. valachicus (B) inferred from Bayesian 

1112 phylogeographic diffusion models. The putative origin of dispersal is shown with a dashed, 

1113 white line. Dispersal routes at different time intervals are indicated by different line 

1114 shadings. Country ISO codes are the same as in Fig. 2.

1115

1116 Fig. 5 Clustering of 81 Niphargus taxa based on 35 morphological traits. Surface-water 

1117 species are indicated with red font and grey shading. The focal N. hrabei and N. valachicus 

1118 are shown with larger font size. Ecomorph names follow Trontelj et al., (2012).

1119

1120

1121

1122
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Supplementary Information

Is subterranean lifestyle reversible? Independent and recent large-scale 
dispersal into surface waters by two species of the groundwater amphipod 

genus Niphargus
Denis Copilaş-Ciocianu, Cene Fišer, Péter Borza and Adam Petrusek

Supplementary Methods

Phylogenetic analyses

Bayesian inference (BI) and maximum-likelihood (ML) approaches were used to reconstruct 
phylogenetic relationships and examine the position of N. hrabei and N. valachicus within the 
genus. Both approaches were applied to the concatenated supermatrix. BI was carried out in 
BEAST 1.8.0 (Drummond et al. 2012). We employed the evolutionary models in Table S4 for 
each partition. Random starting topologies were used for each run and speciation was 
modelled using a Yule prior. As we were not interested in absolute divergence times, we used 
a relaxed molecular clock with a lognormal distribution and the rate was left at the default 
value of 1. Clock models and trees were linked across partitions. The MCMC chain was run 
for 100 million generations with a sampling frequency of 1000 and 30% of the trees were 
discarded as burn-in. Convergence and effective sample size was assessed using TRACER 1.6 
and the maximum clade credibility (MCC) tree was produced with TreeAnnotator 1.8. The 
alignment used in the BEAST analysis had regions of questionable homology in the 28S 
marker removed with GBLOCKS 0.9 (Talavera and Castresana, 2007). To evaluate the effect 
of removal of these regions on the topology of the tree, we used a ML method that 
simultaneously estimates the sequence alignment and phylogenetic tree in SATé 2.2.7 (Liu et 
al. 2009), thus retaining the poorly alignable regions. MAFFT 6.7 (Katoh et al. 2005) was 
used as the initial aligner and OPAL 1.0.3 (Wheeler & Kececioglu 2007) was used to merge 
the alignment of subproblems into the final alignment. The tree was estimated with RAxML 
7.2.6 (Stamatakis 2006) and the GTR+ Γ model. The cycle of alignment and tree estimation 
was iterated ten times. Because SATé does not calculate bootstrap support on RAxML 
produced trees and does not handle codon partitions, the alignment with the best likelihood 
was used for the final tree estimation and bootstrapping in RAxML-HPC 8.2.9 (Stamatakis 
2014). A thorough ML tree search was performed with the GTR+Γ model assigned to each 
partition and 1000 fast bootstrap iterations. We conducted two independent runs of both ML 
and BI. Analyses were carried out on the CIPRES Science Gateway (Miller et al. 2010).

Bayesian phylogeographical diffusion models

To explore the origin and dispersal history of each species while accounting for phylogenetic 
uncertainty, we used Bayesian phylogeographic diffusion models (Lemey et al. 2010) 
implemented in BEAST 1.8.0. The analysis was based on the COI marker and we used the 
same settings as for the time-calibrated phylogenetic analyses. The coordinates of each 
locality were used as a quantitative trait and individuals possessing the same haplotype but 
collected from different locations were retained because their corresponding coordinates 
contained spatial information. We compared four diffusion models available in BEAST: a 



random walk model following a homogeneous Brownian diffusion (BD), and three relaxed 
random walk models (RRW) using gamma, lognormal and Cauchy distributions (Lemey et al. 
2010). For each spatial diffusion model and species, we ran two independent runs of 30 
million generations which were sampled every 1000 steps with 10% burn-in and convergence 
was evaluated with TRACER. The best-fit diffusion models were selected by calculating 
Bayes factors based on marginal likelihoods estimated with path and stepping stone sampling 
(Baele et al. 2012) and are presented in Table S6. The phylogeographic history of each 
species was visualized in Google Earth Pro 7.1.5 (https://www.google.com/earth/) by 
producing and input Keyhole Markup Language (kml) file with SPREAD 1.0.7 (Bielejec et al. 
2011).

Analysed morphological traits

A total of 34 quantitative and one qualitative trait were analysed. Landmarks and 
variation of these traits were presented in a previous study (Fišer et al. 2009). Many of the 
measured traits are presumably linked to the species ecology (see Trontelj et al. 2012; Fišer et 
al. 2015; Copilas-Ciocianu et al. 2017). Body size is related to the trophic ecology, but also to 
the pore size of microhabitats the species lives in (Trontelj et al. 2012). Body shape relates to 
hydrodynamic properties of the body (Dahl 1977) and reproductive biology (Fišer et al. 
2013). It can be inferred from coxal plates II and III and bases of pereopods V-VII (all 
measured as width and length). Appendage length is a tradeoff between extra-optic sensory 
capacity and resilience to water flow (Pipan & Culver 2012; Trontelj et al. 2012, Delić et al. 
2016). We measured lengths of antennae I-II and pereopods V-VII. Shape and size of 
gnathopods I-II is likely involved into feeding biology. We measured lengths of carpus and 
propodus, propodus palm and the length of propodus diagonal (Copilas-Ciocianu et al. 2017). 
Uropods I and III are sexually dimorphic in some species. In these species, males have either 
elongated inner ramus of uropod I, or distal article of exopodite of uropod III, or both. In 
addition, some males have a strange, flap-like appendix on a base of uropod I. We measured 
lengths of both rami of uropod I, and both articles of exopodite of uropod III; the flap-like 
appendix was treated as present-absent. Spines on dactyls of pereopods III-VII, and spines on 
urosomites I-II, the function of which is not known, vary in number between one and nine, 
were counted.
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Fig. S1. Maximum-likelihood (left) and Bayesian phylogenies (right) obtained from the 
concatenated dataset of COI, H3 and 28S sequences. The ML tree was obtained from an 
alignment produced with SATé and contained poorly alignable regions in the 28S marker, 
while the alignment for the BI tree had these regions removed and was obtained with 
MAFFT. Numbers above nodes are bootstrap percentages and posterior probabilities, 
respectively. Only values above 40% and 0.70 are shown. Surface-water species are shown 
with red branches. N. hrabei and N. valachicus are indicated with larger font size.



Fig. S2. Correlation between geographic and genetic (based on COI) distance.



Fig. S3. Cryptic lineage delimitation results based on COI and ITS in N. hrabei (above) and 
N. valachicus (below). A) Results from the bPTP analysis based on COI. Clustered red 
branches indicate putative lineages which correspond to the two focal species, i.e. no 
independent intraspecific lineages were detected. Numbers above branches indicate the 
posterior probability for species assignment. B) Haplowebs based on phased ITS sequences. 
Haplotypes that co-occur in the same individual are connected by thin, dotted lines. All 
haplotypes are interconnected, indicating a common gene pool.


