36 research outputs found

    A bona fide La protein is required for embryogenesis in Arabidopsis thaliana

    Get PDF
    Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3′-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity

    A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase Z<sup>S</sup>) and long (tRNase Z<sup>L</sup>) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase Z<sup>S </sup>and eukaryotic-type tRNase Z<sup>L</sup>, and one minor type, <it>Thermotoga maritima </it>(TM)-type tRNase Z<sup>S</sup>. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant <it>Arabidopsis thaliana</it>. It is unknown whether multiple tRNase Zs found in <it>A. thaliana </it>is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom.</p> <p>Results</p> <p>We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase Z<sup>S</sup>s are present only in basal land plants and green algae, the TM-type tRNase Z<sup>S</sup>s are widespread in green plants. The protein sequences of the TM-type tRNase Z<sup>S</sup>s identified in green plants are similar to those of the bacterial-type tRNase Z<sup>S</sup>s but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase Z<sup>S</sup>s may not recognize the CCA sequence as an anti-determinant.</p> <p>Conclusions</p> <p>Our findings substantially expand the current repertoire of the TM-type tRNase Z<sup>S</sup>s and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.</p

    Transcription by RNA polymerase III: insights into mechanism and regulation

    Get PDF
    The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells

    Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery

    Get PDF
    The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and ma-ture scR1 retains a U4–5 sequence at its 3 ′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3 ′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assem-bly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also impli-cated in protecting the 3 ′ end of scR1, which accu-mulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a pri-mary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degra-dation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, poten-tially facilitating the decision between these alterna-tive fates

    The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability

    No full text
    Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p. In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains. Depletion of Pus3p results in accumulation of the aminoacylated mutant tRNA(Arg)(CCG) in nuclei, while depletion of Pus4p results in decreased stability of the mutant tRNA. Interestingly, the degradation of mutant unstable forms of tRNA(Arg)(CCG) does not require the Trf4p poly(A) polymerase, suggesting that yeast cells possess multiple pathways for tRNA decay. These data demonstrate that La functions redundantly with both tRNA modifications and proteins that associate with tRNAs to achieve tRNA structural stability and efficient biogenesis

    An interplay between transcription, processing, and degradation determines tRNA levels in yeast

    Get PDF
    tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies.Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5�→3� exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3� ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover
    corecore