1,115 research outputs found

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    Nonstationary Stochastic Resonance in a Single Neuron-Like System

    Full text link
    Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic systems injected with an ever broader class of realistic signals.Comment: Plain Latex, 7 figure

    Molecular systematics of swifts of the genus Chaetura (Aves: Apodiformes: Apodidae)

    Get PDF
    Phylogenetic relationships among swifts of the morphologically conservative genus Chaetura were studied using mitochondrial and nuclear DNA sequences. Taxon sampling included all species and 21 of 30 taxa (species and subspecies) within Chaetura. Our results indicate that Chaetura is monophyletic and support the division of the genus into the two subgenera previously identified using plumage characters. However, our genetic data, when considered in combination with phenotypic data, appear to be at odds with the current classification of some species of Chaetura. We recommend that C. viridipennis, currently generally treated as specifically distinct from C. chapmani, be returned to its former status as C. chapmani viridipennis, and that C. andrei, now generally regarded as synonymous with C. vauxi aphanes, again be recognized as a valid species. Widespread Neotropical species C. spinicaudus is paraphyletic with respect to more range-restricted species C. fumosa, C. egregia, and C. martinica. Geographically structured genetic variation within some other species of Chaetura, especially notable in C. cinereiventris, suggests that future study may lead to recognition of additional species in this genus. Biogeographic analysis indicated that Chaetura originated in South America and identified several dispersal events to Middle and North America following the formation of the Isthmus of Panama

    Phase-Field Approach for Faceted Solidification

    Full text link
    We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma-plot with rounded cusps that can approach arbitrarily closely the true gamma-plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma-plot of the form 1+delta(|sin(theta)|+|cos(theta)|). The phase-field results are consistent with the scaling law "Lambda inversely proportional to the square root of V" observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.Comment: 1O pages, 2 tables, 17 figure

    Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture

    Get PDF
    Riparian buffer strips can have a significant role in reducing nitrogen (N) transfers from agricultural land to freshwater primarily via denitrification and plant uptake processes, but an unintended trade-off can be elevated nitrous oxide (N2O) production rates. Against this context, our replicated bounded plot scale study investigated N2O emissions from un-grazed ryegrass pasture served by three types of riparian buffer strips with different vegetation, comprising: (i) grass riparian buffer with novel deep-rooting species, (ii) willow (young trees at establishment phase) riparian buffer, and (iii) deciduous woodland (also young trees at establishment phase) riparian buffer. The experimental control was ryegrass pasture with no buffer strip. N2O emissions were measured at the same time as total oxidized N in run-off, and soil and environmental characteristics in the ri parian buffer strips and upslope pasture between 2018 and 2019. During most of the sampling days, the no-buffer control treatment showed significantly (P < 0.05) greater N2O fluxes and cumulative N2O emissions compared to the remainder of the treatments. Our results also showed that the grass riparian buffer strip is a sink of N2O equivalent to − 2310.2 g N2O-N ha− 1 day− 1 (95% confidence interval:− 535.5 to 492). Event-based water quality results obtained during storms (12 November 2018 and 11 February 2019) showed that the willow riparian buffer treatment had the highest flow-weighted mean N concentrations (N-FWMC) of 0.041 ± 0.022 and 0.031 ± 0.015 mg N L− 1, when compared to the other treatments. Our 9-month experiment therefore, shows that ri parian buffer strips with novel deep-rooting grass can therefore potentially address emissions to both water and air. The results imply that over a shorter timeline similar to the current study, the grass riparian buffer strip can potentially address N emission to both air and water, particularly when serving a permanent pasture in similar settings as the current experiment.Fil: Dlamini, J.C. Crop and Climate Sciences. Departament of Soil; Sudáfrica. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido. University of Pretoria. Department of Plant and Soil Sciences; SudáfricaFil: Cardenas, L.M. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Tesfamarian, E.H. University of Pretoria. Department of Plant and Soil Sciences; SudáfricaFil: Dunn, R.M. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Loick, N. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Charteris, A.F. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Cocciaglia, L. Università degli Studi di Perugia. Dipartimento di Scienze Agrarie, Alimentari e Ambientali; ItaliaFil: Vangeli, Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Manejo y Conservación de Suelo; ArgentinaFil: Blackwell, M.S.A. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Upadhayay, H.R. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Hawkins, J.M.B. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Evans, J. Rothamsted Research. Computational and Analytical Sciences; Reino UnidoFil: Collins, A.L. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido

    Nonstationary Stochastic Resonance

    Full text link
    It is by now established that, remarkably, the addition of noise to a nonlinear system may sometimes facilitate, rather than hamper the detection of weak signals. This phenomenon, usually referred to as stochastic resonance, was originally associated with strictly periodic signals, but it was eventually shown to occur for stationary aperiodic signals as well. However, in several situations of practical interest, the signal can be markedly nonstationary. We demonstrate that the phenomenon of stochastic resonance extends to nonstationary signals as well, and thus could be relevant to a wider class of biological and electronic applications. Building on both nondynamic and aperiodic stochastic resonance, our scheme is based on a multilevel trigger mechanism, which could be realized as a parallel network of differentiated threshold sensors. We find that optimal detection is reached for a number of thresholds of order ten, and that little is gained by going much beyond that number. We raise the question of whether this is related to the fact that evolution has favored some fixed numbers of precisely this order of magnitude in certain aspects of sensory perception.Comment: Plain Latex, 6 figure

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as G∼t−(1−ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λ∼t−2\Lambda \sim t^{-2}, Λ∼(R˙/R)2\Lambda \sim (\dot R/R)^2 and Λ∼R¨/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    The WHAM Northern Sky Survey and the Nature of the Warm Ionized Medium in the Galaxy

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has completed a velocity-resolved map of diffuse H-alpha emission of the entire northern sky, providing the first comprehensive picture of both the distribution and kinematics of diffuse ionized gas in the Galaxy. WHAM continues to advance our understanding of the physical conditions of the warm ionized medium through observations of other optical emission lines throughout the Galactic disk and halo. We discuss some highlights from the survey, including an optical window into the inner Galaxy and the relationship between HI and HII in the diffuse ISM.Comment: 9 pages, 3 figures. To be published in "How does the Galaxy work?", eds. E.J. Alfaro, E. Perez & J. Franco, Kluwer, held 23-27 June 2003 in Granada, Spain. Higher resolution version available at http://www.astro.wisc.edu/~madsen/prof/pubs.htm

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater
    • …
    corecore