Stochastic resonance holds much promise for the detection of weak signals in
the presence of relatively loud noise. Following the discovery of nondynamical
and of aperiodic stochastic resonance, it was recently shown that the
phenomenon can manifest itself even in the presence of nonstationary signals.
This was found in a composite system of differentiated trigger mechanisms
mounted in parallel, which suggests that it could be realized in some
elementary neural networks or nonlinear electronic circuits. Here, we find that
even an individual trigger system may be able to detect weak nonstationary
signals using stochastic resonance. The very simple modification to the trigger
mechanism that makes this possible is reminiscent of some aspects of actual
neuron physics. Stochastic resonance may thus become relevant to more types of
biological or electronic systems injected with an ever broader class of
realistic signals.Comment: Plain Latex, 7 figure